Skip to main content
Log in

Laboratory and pilot testing of electrocoagulation for removing scale-forming species from industrial process waters

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

This study investigated the performance of electrocoagulation using iron and aluminum electrodes for removing silica, calcium and magnesium from cooling tower blowdown and reverse osmosis reject waters. Experiments were conducted at both the bench and pilot scales to determine the levels of target species removal as a function of the coagulant dose. At the bench scale, aluminum removed the target compounds from both cooling tower blowdown and reverse osmosis reject more efficiently than iron. A 2 mM aluminum dose removed 80 % of the silica and 20 to 40 % of the calcium and magnesium. The same iron dose removed only 60 % of the silica and 10 to 20 % of the calcium and magnesium. When operated with iron electrodes, pilot unit performance was comparable to that of the bench unit, which suggests that such systems can be scaled-up on the basis of coagulant dose. However, when operated with aluminum electrodes the pilot unit underperformed the bench unit due to fouling of the electrode surfaces after a few hours of operation. This result was completely unexpected based on the short-term experiments performed using the bench unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Ghani, N.T.; El-chaghaby, G. A., (2007). Influence of operating conditions on the removal of Cu, Zn, Cd and Pbions from wastewater by adsorption. Int. J. Environ. Sci. Tech., 4 (4), 451–456 (6 pages).

    Article  CAS  Google Scholar 

  • Adhoum, N.; Monser, L.; Bellakhal, N; Belgaied, J. E., (2004). Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(IV) by electrocoagulation. J. Hazard. Mater., 112 (3), 207–213 (7 pages).

    Article  CAS  Google Scholar 

  • Akpor, O. B.; Momba, M. N. B.; Okonkwo, J. O.; Coetzee, M. A., (2008). Nutrient removal from activated sludge mixed liquor by wastewater protozoa in a laboratory scale batch reactor. Int. J. Environ. Sci. Tech., 5 (4), 463–470 (8 pages).

    Article  CAS  Google Scholar 

  • Bayat, O.; Kilic, O.; Bayat, B.; Anil, M.; Akarsu, H.; Poole, C., (2006). Electrokinetic dewatering of Turkish glass sand plant tailings. Water Res., 40 (1), 61–66 (6 pages).

    Article  CAS  Google Scholar 

  • Behera, S. K.; Rene, E. R.; Murthy, D. V. S., (2007). Performance of up - flow anoxic bioreactor for wastewater treatment. Int. J. Environ. Sci. Tech., 4 (2), 247–252 (6 pages).

    CAS  Google Scholar 

  • Bektas, N.; Akbulut, H.; Inan, H.; Dimoglo, A., (2004). Removal of phosphate from aqueous solutions by electrocoagulation. J. Hazard. Mater., 106 (2-3), 101–105 (5 pages).

    Article  CAS  Google Scholar 

  • Can, O. T.; Kobya, M.; Demirbas, E.; Bayramoglu, M., (2006). Treatment of the textile wastewater by combined electrocoagulation. Chemosphere, 62 (2), 181–187 (7 pages).

    Article  CAS  Google Scholar 

  • Canizares, P.; Carmona, M.; Lobato, J.; Martinez, F.; Rodrigo, M. A., (2005). Electrodissolution of aluminum electrodes in electrocoagulation processes. Ind. Eng. Chem. Res., 44 (12), 4178–4185 (8 pages).

    Article  CAS  Google Scholar 

  • Chen, G., (2004). Electrochemical technologies in wastewater treatment. Sep. Purif. Tech., 38 (1), 11–41 (31 pages).

    Article  Google Scholar 

  • Den, W.; Huang, C., (2006). Parameter optimization and design aspect for electrocoagulation of silica nano-particles in wafer polishing wastewater. Water Sci. Tech., 53 (6), 187–194 (8 pages).

    Article  CAS  Google Scholar 

  • Den, W.; Huang, C., (2008). Removal of silica from brackish water by electrocoagulation pretreatment to prevent fouling of reverse osmosis membranes. Sep. Purif. Tech., 59 (3), 318–325 (8 pages).

    Article  CAS  Google Scholar 

  • Gao, P.; Chen, X.; Shen, F.; Chen, G., (2005). Removal of chromium (VI) from wastewater by combined electrocoagulation-electroflotation without a filter. Sep. Purif. Tech., 43 (2), 117–23 (7 pages).

    Article  CAS  Google Scholar 

  • Gu, Z.; Liao, L.; Schulz, M.; Davis, J. R.; Baygents, J. C.; Farrell, J., (2009). Estimating dosing rates and energy consumption for electrocoagulation using iron and aluminum electrodes. Ind. Eng. Chem. Res., 48 (6), 3112–3117 (6 pages).

    Article  CAS  Google Scholar 

  • Holt, P. K.; Barton, G. W.; Mitchell, C. A., (2005). The future for electrocoagulation as a localized water treatment technology. Chemosphere, 59 (3), 355–367 (13 pages).

    Article  CAS  Google Scholar 

  • Kannan, N.; Karthikeyan, G.; Tamilselvan, N., (2006). Comparison of treatment potential of electrocoagulation of distillery effluent with and without activated Areca catechu nut carbon. J. Hazard. Mater., 137 (3), 1803–1809 (7 pages).

    Article  CAS  Google Scholar 

  • Kumar, P. R.; Chaudhari, S.; Khilar, K. C.; Mahajan, S. P., (2004). Removal of arsenic from water by electrocoagulation. Chemosphere, 55 (9), 1245–1252 (8 pages).

    Article  Google Scholar 

  • Laridi, R.; Drogul, P.; Benmoussa, H.; Blais, J. F.; Auclair, J. C., (2005). Removal of refractory organic compounds in liquid swine manure obtained from a biofiltration process using an electrochemical treatment. J. Environ. Eng., 131 (9), 1302–1310 (9 pages).

    Article  CAS  Google Scholar 

  • Lin, C. J.; Lo, S. L.; Kuo, C. Y.; Wu, C. H., (2005). Pilot-scale electrocoagulation with bipolar aluminum electrodes for on-site domestic greywater reuse. J. Environ. Eng., 131 (3), 491–495 (5 pages).

    Article  CAS  Google Scholar 

  • Mickley, M., (2004). Pretreatment capabilities and benefits of electrocoagulation. United States Office of Naval Research, Washington, DC, USA.

  • Mollah, M. Y. A.; Morkovsky, P.; Gomes, J. A. G.; Kesmez, M.; Parga, J.; Cocke, D. L., (2004). Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mater., 114 (1-3), 199–210 (12 pages).

    Article  CAS  Google Scholar 

  • Picard, T.; Cathalifaud-Feuillade, G.; Mazet, M.; Vandensteendam, C., (2000). Cathodic dissolution in the electrocoagulation process using aluminium electrodes. J. Environ. Monit., 2 (1), 77–80 (4 pages).

    Article  CAS  Google Scholar 

  • Schulz, M. C., (2008). Electrocoagulation applied to water conservation and waste treatment., M.Sc. Thesis, University of Arizona.

  • Soltanali, S.; Shams Hagani, Z., (2008). Modeling of air stripping from volatile organic compounds in biological treatment processes. Int. J. Environ. Sci. Tech., 5 (3), 353–360 (8 pages).

    Article  CAS  Google Scholar 

  • Zhu, B.; Clifford, D. A.; Chellam, S., (2005). Comparison of electrocoagulation and chemical coagulation pretreatment for enhanced virus removal using microfiltration membranes., Water Res., 39 (13), 3098–3108 (11 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Farrell Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, M.C., Baygents, J.C. & Farrell, J. Laboratory and pilot testing of electrocoagulation for removing scale-forming species from industrial process waters. Int. J. Environ. Sci. Technol. 6, 521–526 (2009). https://doi.org/10.1007/BF03326091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326091

Keywords

Navigation