Skip to main content
Log in

Targeted Immunoliposomes

Potential Role in the Delivery of Cytotoxic Drugs

  • Review Article
  • Research Perspective
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

Antibody-directed liposomes, or immunoliposomes, have been extensively examined for potential applications for site-specific drug delivery. A wide variety of cytotoxic drugs, including conventional low molecular weight cytotoxic drugs, proteins, peptides, oligonucleotides and plasmid DNA, have been formulated in immunoliposomes. Although the rationale of this approach has been well established in a number of studies in vitro, only a limited number of successful applications of immunoliposomes have been reported in vivo. Several physiological barriers, including anatomical, pharmacokinetic and cellular, have been identified, and efforts are in progress to overcome these barriers and to develop more efficient immunoliposome systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ehrlich PA. General review of the recent work in immunity. In: Himmelweit F, editor. Collected papers of Paul Ehrlich, Vol. 2. Immunology and cancer research, 1900: 442. London: Pergamon Press, 1956

    Google Scholar 

  2. Poste G, Kirsh R. Site-specific (targeted) drug delivery in cancer therapy. Biotechnology 1983; 1: 869–78

    Article  CAS  Google Scholar 

  3. Gupta PK. Drug targeting in cancer chemotherapy: a clinical perspective. J Pharm Sci 1990; 79: 949–62

    Article  PubMed  CAS  Google Scholar 

  4. Rowlinson-Busza G, Epenetos AA. Targeted delivery of biologic and other antineoplastic agents. Curr Opin Oncol 1992; 4: 1142–8

    Article  PubMed  CAS  Google Scholar 

  5. Cummings J, Smyth JF. Cytotoxic drug delivery. In: Florence AT, Salole EG, editors. Topics in pharmacy. Vol. III. Oxford: Butterworth-Heinemann, 1993: 27–53

    Google Scholar 

  6. Machy P, Leserman L. ‘Piloting’ of drugs and biological macromolecules: approaches to therapy. In: Machy P, Leserman L, editors. Liposomes in cell biology and pharmacology. London: John Libbey Eurotext, 1987: 34–97

    Google Scholar 

  7. Ghose T, Blair AH. Antibody-linked cytotoxic agents in the treatment of cancer: current status and future prospects. J Natl Cancer Inst 1978; 61: 657–76

    PubMed  CAS  Google Scholar 

  8. Brodsky FM. Monoclonal antibodies as magic bullets. Pharm Res 1988; 5: 1–9

    Article  PubMed  CAS  Google Scholar 

  9. Ranade VV. Drug delivery systems II. Site-specific drug delivery utilizing monoclonal antibodies. J Clin Pharmacol 1989; 29: 873–84

    PubMed  CAS  Google Scholar 

  10. Blakey DC. Drug targeting with monoclonal antibodies. Rev Oncol 1992; 5: 91–7

    Google Scholar 

  11. Kosmas C, Linardou H, Epenetos AA. Advances in monoclonal antibody tumour targeting. J Drug Targeting 1993; 1: 81–91

    Article  CAS  Google Scholar 

  12. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495–7

    Article  PubMed  CAS  Google Scholar 

  13. Wright S, Huang L. Antibody-directed liposomes as drug-delivery vehicles. Adv Drug Deliv Rev 1989; 3: 343–89

    Article  Google Scholar 

  14. Peeters PAM, Storm G, Crommelin DJA. Immunoliposomes in vivo: state of the art. Adv Drug Deliv Rev 1987; 1: 249–66

    Article  Google Scholar 

  15. Allen TM, Agrawal AK, Ahmad I, et al. Antibody-mediated targeting of long-circulating (Stealth®) liposomes. J Liposome Res 1994; 4: 1–25

    Article  CAS  Google Scholar 

  16. Connor J, Sullivan S, Huang L. Monoclonal antibody and liposomes. Pharmacol Ther 1985; 28: 341–65

    Article  PubMed  CAS  Google Scholar 

  17. Lasic DD. Liposomes: from physics and applications. New York: Elsevier Science Publishers, 1993: 265–321

    Google Scholar 

  18. Szoka Jr FC. The future of liposomal drug delivery. Biotechnol Appl Biochem 1990; 12: 496–500

    PubMed  CAS  Google Scholar 

  19. Juliano RL, Layton D. Liposomes as a drug delivery system. In: Juliano RL, editor. Drug delivery systems, characteristics and biomedical application. New York: Oxford University Press, 1980: 189–236

    Google Scholar 

  20. Gregoriadis G, Florence AT. Liposomes in drug delivery. Drugs 1993; 45: 15–28

    Article  PubMed  CAS  Google Scholar 

  21. Senior JH. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 1987; 3: 123–93

    PubMed  CAS  Google Scholar 

  22. Scherphof GL. In vivo behavior of liposomes: interactions with the mononuclear phagocyte system and implications for drug targeting. In: Juliano RL, editor. Targeted drug delivery. New York: Springer-Verlag, 1991: 285–327

    Chapter  Google Scholar 

  23. Toonen PAHM, Crommelin DJA. Immunoglobulins as targeting agents for liposome-encapsulated drugs. Pharm Weekbl Sci 1983; 5: 269–80

    Article  PubMed  CAS  Google Scholar 

  24. Torchilin VP. Liposomes as targetable drug carriers. Crit Rev Ther Drug Carrier Syst 1985; 2: 65–115

    PubMed  CAS  Google Scholar 

  25. Sullivan SM, Connor J, Huang L. Immunoliposomes: preparations, properties, and applications. Med Res Rev 1986; 6: 171–95

    Article  PubMed  CAS  Google Scholar 

  26. Machy P, Barbet J, Leserman L. Differential endocytosis of T and B lymphocyte surface molecules evaluated with antibody-bearing fluorescent liposomes containing methotrexate. Proc Natl Acad Sci USA 1982; 79: 4148–52

    Article  PubMed  CAS  Google Scholar 

  27. Heath TD, Montgomery JA, Piper JR, et al. Antibody-targeted liposomes: increase in specific toxicity of methotrexate-y-aspartate. Proc Natl Acad Sci USA 1983; 80: 1377–81

    Article  PubMed  CAS  Google Scholar 

  28. Matthay KK, Health TD, Badger CC, et al. Antibody-directed liposomes: comparison of various ligands for association, endocytosis, and drug delivery. Cancer Res 1986; 46: 4904–10

    PubMed  CAS  Google Scholar 

  29. Berinstein N, Matthay KK, Papahadjopoulos D, et al. Antibody-directed targeting of liposomes to human cell lines: role of binding and internalization on growth inhibition. Cancer Res 1987; 47: 5954–9

    PubMed  CAS  Google Scholar 

  30. Noe W, Hernandez-Borrell J, Kinsky SC, et al. Inhibition of cell proliferation with antibody-targeted liposomes containing methotrexate-γ-dimyristoylphosphatidylethanolamine. Biochim Biophys Acta 1988; 946: 253–60

    Article  PubMed  CAS  Google Scholar 

  31. Straubinger RM, Lopez NG, Debs RJ, et al. Liposome-based therapy of human ovarian cancer: parameters determining potency of negatively charged and antibody-targeted liposomes. Cancer Res 1988; 48: 5237–45

    PubMed  CAS  Google Scholar 

  32. Singh M, Ghose T, Faulkner G, et al. Targeting of methotrexate-containing liposomes with a monoclonal antibody against human renal cancer. Cancer Res 1989; 49: 3976–84

    PubMed  CAS  Google Scholar 

  33. Matthay KK, Abai AM, Cobb S, et al. Role of ligand in antibody-directed endocytosis of liposomes by human T-leukemia cells. Cancer Res 1989; 49: 4879–86

    PubMed  CAS  Google Scholar 

  34. Hege KM, Daleke DL, Waldmann TA, et al. Comparison of anti-Tac and anti-transferrin receptor-conjugated liposomes for specific drug delivery to adult T-cell leukemia. Blood 1989; 6: 2043–52

    Google Scholar 

  35. Suzuki H, Zelphati O, Hildebrand G, et al. CD4 and CD7 molecules as targets for drug delivery from antibody bearing liposomes. Exp Cell Res 1991; 193: 112–9

    Article  PubMed  CAS  Google Scholar 

  36. Jones MN, Hudson MJH. The targeting of immunoliposomes to tumour cells (A431) and the effect of encapsulated methotrexate. Biochim Biophys Acta 1993; 1152: 231–42

    Article  PubMed  CAS  Google Scholar 

  37. Konno H, Suzuki H, Tadakuma T, et al. Antitumor effect of adriamycin entrapped in liposomes conjugated with anti-human α-fetoprotein monoclonal antibody. Cancer Res 1987; 47: 4471–7

    PubMed  CAS  Google Scholar 

  38. Ohta S, Igarashi S, Honda A, et al. Cytotoxicity of adriamycincontaining immunoliposomes targeted anti-ganglioside monoclonal antibodies. Anticancer Res 1993; 13: 331–6

    PubMed  CAS  Google Scholar 

  39. Rahman A, Panneerselvam M, Guirguis R, et al. Anti-laminin receptor antibody targeting of liposomes with encapsulated doxorubicin to human breast cancer cells in vitro. J Natl Cancer Inst 1989; 81: 1794–800

    Article  PubMed  CAS  Google Scholar 

  40. Ahmad I, Allen TM. Antibody-mediated specific binding and cytotoxicity of liposome-entrapped doxorubicin to lung cancer cells in vitro. Cancer Res 1992; 52: 4817–20

    PubMed  CAS  Google Scholar 

  41. Ho RJY, Rouse BT, Huang L. Target-sensitive immunoliposomes as an efficient drug carrier for antiviral activity. J Biol Chem 1987; 262: 13973–8

    PubMed  CAS  Google Scholar 

  42. Hashimoto Y, Sugawara M, Masuko T, et al. Antitumor effect of actinomycin D entrapped in liposomes bearing subunits of tumor-specific monoclonal immunoglobulin M antibody. Cancer Res 1983; 43: 5328–34

    PubMed  CAS  Google Scholar 

  43. Singh M, Ghose T, Mezei M, et al. Inhibition of human renal cancer by monoclonal antibody targeted methotrexate-containing liposomes in an ascites tumor model. Cancer Lett 1991; 56: 97–102

    Article  PubMed  CAS  Google Scholar 

  44. Heath TD, Lopez NG, Papahadjopoulos D. The effects of liposome size and surface charge on liposome-mediated delivery of methotrexate-γ-aspartate to cells in vitro. Biochim Biophys Acta 1985; 820: 74–84

    Article  PubMed  CAS  Google Scholar 

  45. Onuma M, Yasutomi Y, Yamamoto M, et al. Antitumor effect of adriamycin entrapped in liposomes conjugated with anti-bovine tumor antigen monoclonal antibody in leukemic cows. Zentralbl Veterinarmed 1989; 36: 139–47

    CAS  Google Scholar 

  46. Ahmad I, Longenecker M, Samuel J, et al. Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice. Cancer Res 1993; 53: 1484–8

    PubMed  CAS  Google Scholar 

  47. Mori A, Kennel SJ, Huang L. Immunotargeting of liposomes containing lipophilic antitumor prodrugs. Pharm Res 1993; 10: 507–14

    Article  PubMed  CAS  Google Scholar 

  48. Mori A, Kennel SJ, van Borssum Waalkes M, et al. Characterization of organ-specific immunoliposomes for delivery of 3′,5′-O-dipalmitoyl-5-fluoro-2′-deoxyuridine in a mouse lung metastasis model. Cancer Chemother Pharmacol 1995. In press

    Google Scholar 

  49. Wawrzynczak EJ. Systemic immunotoxin therapy of cancer: advances and prospects. Br J Cancer 1991; 64: 624–30

    Article  PubMed  CAS  Google Scholar 

  50. Collins D, Huang L. Cytotoxicity of diphtheria toxin A fragments to toxin-resistant murine cells delivered by pH-sensitive immunoliposomes. Cancer Res 1987; 47: 735–9

    PubMed  CAS  Google Scholar 

  51. Sidhu RS, Bollon AP. Tumor necrosis factor activities and cancer therapy-a perspective. Pharmacol Ther 1993; 57: 79–128

    Article  PubMed  CAS  Google Scholar 

  52. Morishige H, Ohkura T, Kaji A. In vitro cytostatic effect of TNF (tumor necrosis factor) entrapped in immunoliposomes on cells normally insensitive to TNF. Biochim Biophys Acta 1993; 1151: 59–68

    Article  PubMed  CAS  Google Scholar 

  53. Vingerhoeds MH, Haisma HJ, van Muijen M, et al. A new application for liposomes in cancer therapy. Immunoliposomes bearing enzymes (immuno-enzymosomes) for site-specific activation of proteins. FEBS Lett 1993; 336: 485–90

    Article  PubMed  CAS  Google Scholar 

  54. Bagshawe KD, Springer CJ, Searle F. A cytotoxic agent can be generated at cancer sites. Br J Cancer 1988; 58: 700–3

    Article  PubMed  CAS  Google Scholar 

  55. Knox RJ, Connors TA. Antibody-directed enzyme prodrug therapy: potential in cancer. Clin Immunother 1995; 3(2): 136–53

    Article  Google Scholar 

  56. Zon G. Oligonucleotide analogues as potential chemotherapeutic agents. Pharm Res 1988; 5: 539–49

    Article  PubMed  CAS  Google Scholar 

  57. Rothenberg M, Johnson G, Laughlin C, et al. Oligodeoxynucleotides as antisense inhibitors of gene expression: therapeutic implications. J Natl Cancer Inst 1989; 81: 1539–44

    Article  PubMed  CAS  Google Scholar 

  58. Crooke ST. Therapeutic applications of oligonucleotides. Biotechnology 1992; 10: 882–6

    Article  PubMed  CAS  Google Scholar 

  59. Tidd DM. A potential role for antisense oligonucleotide analogues in the development of oncogene targeted cancer chemotherapy. Anticancer Res 1990; 10: 1169–82

    PubMed  CAS  Google Scholar 

  60. Calabretta B. Inhibition of protooncogene expression by antisense oligodeoxynucleotides: biological and therapeutic implications. Cancer Res 1991; 51: 4505–10

    PubMed  CAS  Google Scholar 

  61. Helene C. Rational design of sequence-specific oncogene inhibitors based on antisense and antigene oligonucleotides. Eur J Cancer 1991; 27: 1466–71

    Article  PubMed  CAS  Google Scholar 

  62. Chen T-L, Miller PS, Ts’o POP, et al. Disposition and metabolism of oligonucleoside methylphosphonate following a single iv injection in mice. Drug Metab Dispos 1990; 18: 815–8

    PubMed  CAS  Google Scholar 

  63. Akhtar S, Shojo Y, Juliano RL. Pharmaceutical aspects of the biological stability and membrane transport characteristics of antisense oligonucleotides. In: Erickson RP, Izant JG, editors. Biology of antisense RNA and DNA. New York: Raven Press, 1992: 133–45

    Google Scholar 

  64. Bishop JM. The molecular genetics of cancer. Science 1987; 235: 305–11

    Article  PubMed  CAS  Google Scholar 

  65. Leserman L, Degols G, Machy P, et al. Targeting and intracellular delivery of antisense oligonucleotides interfering with oncogene expression. In: Wickstrom E, editor. Prospects for antisense nucleic acid therapy of cancer and viral infections. New York: Wiley-Liss, 1991: 25

    Google Scholar 

  66. Witte ON. Role of the bcr-abl oncogene in human leukemia. Cancer Res 1993; 53: 485–9

    PubMed  CAS  Google Scholar 

  67. Tari AM, Tucker SD, Deisseroth A, et al. Liposomal delivery of methylphosphonate antisense oligonucleotides in chronic myelogeneous leukemias. Blood 1994; 84: 601–7

    PubMed  CAS  Google Scholar 

  68. Leonetti J-P, Machy P, Degols G, et al. Antibody-targeted liposomes containing oligodeoxyribonucleotides complementary to viral RNA selectively inhibit viral replication. Proc Natl Acad Sci USA 1990; 87: 2448–51

    Article  PubMed  CAS  Google Scholar 

  69. Friedmann T. Gene therapy of cancer through restoration of tumor-suppressor functions? Cancer 1992; 70: 1810–7

    Article  PubMed  CAS  Google Scholar 

  70. Wang C-Y, Huang L. Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes. Biochemistry 1989; 28: 9508–14

    Article  PubMed  CAS  Google Scholar 

  71. Wang C-Y, Huang L. pH-sensitive immunoliposomes mediate target-cell-specific delivery and controlled expression of a foreign gene in mouse. Proc Natl Acad Sci USA 1987; 84: 7851–5

    Article  PubMed  CAS  Google Scholar 

  72. Mizuno M, Yoshida J, Sugita K, et al. Growth inhibition of glioma cells transfected with the human β-interferon gene by liposomes coupled with a monoclonal antibody. Cancer Res 1990; 50: 7826–9

    PubMed  CAS  Google Scholar 

  73. Nässander UK, Steerenberg PA, Poppe H, et al. In vivo targeting of OV-TL 3 immunoliposomes to ascitic ovarian carcinoma cells (OVCAR-3) in athymic nude mice. Cancer Res 1992; 52: 646–53

    PubMed  Google Scholar 

  74. Ford VA, Stringer C, Kennel SJ. Thrombomodulin is preferentially expressed in Balb/c lung microvessels. J Biol Chem 1992; 267: 5446–50

    PubMed  CAS  Google Scholar 

  75. Hughes BJ, Kennel S, Lee R, et al. Monoclonal antibody targeting of liposomes to mouse lung in vivo. Cancer Res 1989; 49: 6214–20

    PubMed  CAS  Google Scholar 

  76. Holmberg E, Maruyama K, Litzinger DC, et al. Highly efficient immunoliposomes prepared with a method which is compatible with various lipid compositions. Biochem Biophys Res Commun 1989; 165: 1272–8

    Article  PubMed  CAS  Google Scholar 

  77. Maruyama K, Holmberg E, Kennel SJ, et al. Characterization of in vivo immunoliposome targeting to pulmonary endothelium. J Pharm Sci 1990; 79: 978–84

    Article  PubMed  CAS  Google Scholar 

  78. Holmberg E, Maruyama K, Kennel S, et al. Target-specific binding of immunoliposomes in vivo. J Liposome Res 1990; 1: 393–406

    Article  CAS  Google Scholar 

  79. Mostov KE, Simister NE. Transcytosis. Cell 1985; 43: 389–90

    Article  PubMed  CAS  Google Scholar 

  80. Dvorak HF, Nagy JA, Dvorak JT, et al. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 1988; 133: 95–109

    PubMed  CAS  Google Scholar 

  81. Maeda H. The tumor blood vessel as an ideal target for macromolecular anticancer agents. J Control Release 1992; 19: 315–24

    Article  CAS  Google Scholar 

  82. Maeda H, Seymour LW, Miyamoto Y. Conjugates of anticancer agents and polymers: advantages of macromolecular therapeutics in vivo. Bioconjug Chem 1992; 3: 351–62

    Article  PubMed  CAS  Google Scholar 

  83. Klibanov AL, Huang L. Long-circulating liposomes: development and perspectives. J Liposome Res 1992; 2: 321–34

    Article  CAS  Google Scholar 

  84. Woodle MC, Lasic DD. Sterically stabilized liposomes. Biochim Biophys Acta 1992; 1113: 171–99

    Article  PubMed  CAS  Google Scholar 

  85. Allen TM. Stealth™ liposomes: avoiding reticuloendothelial uptake. UCLA Symp Mol Cell Biol 1989; 89: 405–15

    Google Scholar 

  86. Allen TM, Chonn A. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett 1987; 223: 42–6

    Article  PubMed  CAS  Google Scholar 

  87. Allen TM, Hansen C, Rutledge J. Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues. Biochim Biophys Acta 1989; 981: 27–35

    Article  PubMed  CAS  Google Scholar 

  88. Allen TM, Hansen C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta 1991; 1068: 133–41

    Article  PubMed  CAS  Google Scholar 

  89. Klibanov AL, Maruyama K, Torchilin VP, et al. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 1990; 268: 235–7

    Article  PubMed  CAS  Google Scholar 

  90. Blume G, Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta 1990; 1029: 91–7

    Article  PubMed  CAS  Google Scholar 

  91. Senior J, Delgado C, Fisher D, et al. Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta 1991; 1062: 77–82

    Article  PubMed  CAS  Google Scholar 

  92. Maruyama K, Kennel SJ, Huang L. Lipid composition is important for highly efficient target binding and retention of immunoliposomes. Proc Natl Acad Sci USA 1990; 87: 5744–8

    Article  PubMed  CAS  Google Scholar 

  93. Klibanov AL, Maruyama K, Beckerleg AM, et al. Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim Biophys Acta 1991; 1062: 142–8

    Article  PubMed  CAS  Google Scholar 

  94. Mori A, Klibanov AL, Torchilin VP, et al. Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett 1991; 284: 263–6

    Article  PubMed  CAS  Google Scholar 

  95. Torchilin VP, Klibanov AL, Huang L, et al. Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. FASEB J 1992; 6: 2716–9

    PubMed  CAS  Google Scholar 

  96. Aragnol D, Leserman L. Immune clearance of liposomes inhibited by an anti-Fc receptor antibody in vivo. Proc Natl Acad Sci USA 1986; 83: 2699–703

    Article  PubMed  CAS  Google Scholar 

  97. Leserman LD, Machy P, Devaux C, et al. Antibody-bearing liposomes: targeting in vivo. Biol Cell 1983; 47: 111–6

    Google Scholar 

  98. Agrawal AK, Singhal A, Gupta CM. Functional drug targeting to erythrocytes in vivo using antibody-bearing liposomes as drug vesicles. Biochem Biophys Res Commun 1987; 148: 357–61

    Article  PubMed  CAS  Google Scholar 

  99. Connor J, Norley N, Huang L. Biodistribution of pH-sensitive immunoliposomes. Biochim Biophys Acta 1986; 884: 474–81

    Article  PubMed  CAS  Google Scholar 

  100. Jain RK. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst 1989; 81: 570–6

    Article  PubMed  CAS  Google Scholar 

  101. Jain RK. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev 1990; 9: 253–66

    Article  PubMed  CAS  Google Scholar 

  102. Jain RK Baxter LT. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res 1988; 48: 7022–32

    PubMed  CAS  Google Scholar 

  103. Jain RK. Determinants of tumor blood flow: a review. Cancer Res 1988; 48: 2641–58

    PubMed  CAS  Google Scholar 

  104. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res 1987; 47: 3039–51

    PubMed  CAS  Google Scholar 

  105. Juweid M, Neumann R, Paik C, et al. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res 1992; 52: 5144–53

    PubMed  CAS  Google Scholar 

  106. Ho RJY, Rouse BT, Huang L. Target-sensitive immunoliposomes: preparation and characterization. Biochemistry 1986; 25: 5500–6

    Article  PubMed  CAS  Google Scholar 

  107. Ho RJY, Rouse BT, Huang L. Target-sensitive immunoliposomes as an efficient drug carrier for antiviral activity. J Biol Chem 1987; 262: 13973–8

    PubMed  CAS  Google Scholar 

  108. Ho RJY, Rouse BT, Huang L. Interaction of target-sensitive immunoliposomes with herpes simplex virus. J Biol Chem 1987; 262: 13979–84

    PubMed  CAS  Google Scholar 

  109. Sullivan SM, Huang L. Preparation and characterization of heat-sensitive immunoliposomes. Biochim Biophys Acta 1985; 812: 116–26

    Article  PubMed  CAS  Google Scholar 

  110. Sullivan SM, Huang L. Enhanced delivery to target cells by heat-sensitive immunoliposomes. Proc Natl Acad Sci USA 1986; 83: 6117–21

    Article  PubMed  CAS  Google Scholar 

  111. Connor J, Huang L. pH-sensitive immunoliposomes as an efficient and target-specific carrier for antitumor drugs. Cancer Res 1986; 46: 3431–5

    PubMed  CAS  Google Scholar 

  112. Connor J, Huang L. Efficient cytoplasmic delivery of a fluorescent dye by pH-sensitive immunoliposomes. J Cell Biol 101: 1985; 582–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, A., Huang, L. Targeted Immunoliposomes. Clin. Immunother. 3, 227–240 (1995). https://doi.org/10.1007/BF03259058

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03259058

Keywords

Navigation