Skip to main content
Log in

Theoretical optical waveguide investigation of self-organized polymer thin film nanostructures with nanoparticle incorporation

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Hybrid thin film nanostructures composed of metal nanoparticles (NPs) and self-assembled polymer films with different spatial distributions of NPs were analyzed by optical waveguide spectroscopy (OWS). Specifically, the dielectric constants were calculated using effective medium theory for the incorporation of 1 vol% Au NP into the block copolymer (BCP) films having a cylindrical nanodomain morphology. Three cases were considered: uniform distribution of NPs in the film; selective distribution of NPs only in the cylindrical domains; and segregation of NPs to the center of the cylindrical domains. The optical waveguide spectra derived from the calculated dielectric constants demonstrate the feasibility of experimentally distinguishing the composite nanostructures with different inner morphologies in the hybrid metal NP-BCP nanostructures, by the measurement of the dielectric constants using OWS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. W. Hamley,The physics of Block Copolymers, Oxford University Press, New York, 1998.

    Google Scholar 

  2. G. H. Fredrickson and F. S. Bates,Annu. Rev. Mater. Sci.,26, 501 (1996).

    Article  CAS  Google Scholar 

  3. M. Lazzari and M. A. López-Quintela,Adv. Mater.,15, 1583 (2003).

    Article  CAS  Google Scholar 

  4. I. W. Hamley,Angew. Chem. Int. Ed.,42, 1692 (2003).

    Article  CAS  Google Scholar 

  5. A. M. Urbas, M. Maldovan, P. DeRege, and E. L. Thomas,Adv. Mater.,14, 1850 (2002).

    Article  CAS  Google Scholar 

  6. S.-H. Nam, J.-W. Kang, and J.-J. Kim,Macromol. Res.,14, 114 (2006).

    Article  CAS  Google Scholar 

  7. K. B. Yoon,Macromol. Res.,12, 290 (2004).

    Article  CAS  Google Scholar 

  8. M. A. van Dijk and R. van den Berg,Macromolecules,28, 6773 (1995).

    Article  Google Scholar 

  9. Y. Wang, R. Song, Y. S. Li, and J. S. Shen,Surf. Sci.,530, 136 (2003).

    Article  CAS  Google Scholar 

  10. Z. Sun, D. H. Kim, M. Wolkenhauer, G.-G. Bumbu, W. Knoll, and J. S. Gutmann,Chem. Phys. Chem.,7, 370 (2006).

    Article  CAS  Google Scholar 

  11. D. H. Kim, K. H. A. Lau, W. Joo, J. Peng, U. Jeong, C. J. Hawker, J. K. Kim, T. P. Russell, and W. Knoll,J. Phys. Chem. B,110, 15381 (2006).

    Article  CAS  Google Scholar 

  12. D. H. Kim, K. H. A. Lau, J. W. F. Robertson, O.-J. Lee, U. Jeong, J. I. Lee, C. J. Hawker, T. P. Russell, J. K. Kim, and W. Knoll,Adv. Mater.,17, 2442 (2005).

    Article  CAS  Google Scholar 

  13. D. E. Aspnes,Thin Solid Films,89, 249 (1982).

    Article  CAS  Google Scholar 

  14. C. G. Granqvist and O. Hunderi,Phys. Rev. B,18, 2897 (1978).

    Article  CAS  Google Scholar 

  15. S. Eustis and M. A. El-Sayed,Chem. Soc. Rev.,35, 209 (2006).

    Article  CAS  Google Scholar 

  16. M. E. Franke, T. J. Koplin, and U. Simon,Small,2, 36 (2006).

    Article  CAS  Google Scholar 

  17. D. H. Kim, X. Jia, Z. Lin, K. Guarini, and T. P. Russell,Adv. Mater.,16, 702 (2004).

    Article  CAS  Google Scholar 

  18. J. F. Berret, N. Schonbeck, F. Gazeau, D. El Kharrat, O. Sandre, A. Vacher, and M. Airiau,J. Am. Chem. Soc.,128, 1755 (2006).

    Article  CAS  Google Scholar 

  19. X. Li, P. Göring, E. Pippel, M. Steinhart, D. H. Kim, and W. Knoll,Macromol. Rapid Comm.,26, 1173 (2005).

    Article  CAS  Google Scholar 

  20. S. Horiuchi, T. Fujita, T. Hayakawa, and Y. Nakao,Langmuir,19, 2963 (2003).

    Article  CAS  Google Scholar 

  21. C. G. Granqvist and O. Hunderi,Phys. Rev. B,16, 3513 (1977).

    Article  CAS  Google Scholar 

  22. U. Jeong, D. Y. Ryu, D. H. Kho, J. K. Kim, J. T. Goldbach, D. H. Kim, and T. P. Russell,Adv. Mater.,16, 533 (2004).

    Article  CAS  Google Scholar 

  23. W. Knoll,Annu. Rev. Phys. Chem.,49, 569 (1998).

    Article  CAS  Google Scholar 

  24. G. L. Hornyak, C. J. Patrissi, and C. R. Martin,J. Phys. Chem. B,101, 1548 (1997).

    Article  CAS  Google Scholar 

  25. J. C. Maxwell-Garnett,Philos. Trans. R. Soc. London,203, 385 (1904).

    Article  Google Scholar 

  26. J. C. Maxwell-Garnett,Philos. Trans. R. Soc. London,205, 237 (1906).

    Article  Google Scholar 

  27. F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry,Phys. Rev. Lett.,78, 4289 (1997).

    Article  Google Scholar 

  28. D. A. G. Bruggeman,Ann. Phys. (Leipzig),24, 636 (1935).

    CAS  Google Scholar 

  29. L. G. Schulz,J. Opt. Soc. Am.,44, 357 (1954).

    Article  CAS  Google Scholar 

  30. L. G. Schulz and F. R. Tangherlini,J. Opt. Soc. Am.,44, 362 (1954).

    Article  CAS  Google Scholar 

  31. M. Maldovan, M. R. Bockstaller, E. L. Thomas, and W. C. Carter,Appl. Phys. B,76, 877 (2003).

    Article  CAS  Google Scholar 

  32. O. J. F. Martin and N. B. Piller,Phys. Rev. E,58, 3909 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Ha Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, K.H.A., Knoll, W. & Kim, D.H. Theoretical optical waveguide investigation of self-organized polymer thin film nanostructures with nanoparticle incorporation. Macromol. Res. 15, 211–215 (2007). https://doi.org/10.1007/BF03218777

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218777

Keywords

Navigation