Skip to main content
Log in

Ion-counting nanodosimetry: current status and future applications

  • Scientific Papers
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

There is a growing interest in the study of interactions of ionizing radiation with condensed matter at the nanometer level. The motivation for this research is the hypothesis that the number of ionizations occurring within short segments of DNA-size subvolumes is a major factor determining the biological effectiveness of ionizing radiation. A novel dosimetry technique, called nanodosimetry, measures the spatial distribution of individual ionizations in an irradiated low-pressure gas model of DNA. The measurement of nanodosimetric event size spectra may enable improved characterization of radiation quality, with applications in proton and charged-particle therapy, radiation protection, and space research. We describe an ion-counting nanodosimeter developed for measuring radiation-induced ionization clusters in small, wall-less low-pressure gas volumes, simulating short DNA segments. It measures individual radiation-induced ions, deposited in 1 Torr propane within a tissue-equivalent cylindrical volume of 2–4 nm diameter and up to 100 nm length. We present first ionization cluster size distributions obtained with 13.6 MeV protons, 4.25 MeV alpha particles and 24.8 MeV carbon nuclei in propane; they correspond to a wide LET range of 4–500 keV/μm. We are currently developing plasmid-based assays to characterize the local clustering of DNA damage with biological methods. First results demonstrate that there is increasing complexity of DNA damage with increasing LET. Systematic comparison of biological and nanodosimetric data will help us to validate biophysical models predicting radiation quality based on nanodosimetric spectra. Possible applications for charged particle radiation therapy planning are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rossi, H.H.,Specification of radiation quality, Radiat Res. 10: 522–531, 1959.

    Article  CAS  PubMed  Google Scholar 

  2. Kellerer, A.M., and Chmelevsky, D.,Concepts of microdosimetry. II. Probability distributions of the microscopic variables, Radiat Environ Biophys. 12: 205–216, 1975.

    Article  CAS  PubMed  Google Scholar 

  3. Prise, K.M., Pinto, M., Newman, H.C., and Michael, B.D.,A review of studies of ionizing radiation-induced double-strand break clustering, Radiat Res. 156: 572–576, 2001.

    Article  CAS  PubMed  Google Scholar 

  4. Ward, J.F.,The complexity of DNA damage—relevance to biological consequences, Int J Radiat Biol. 66: 427–432, 1994.

    Article  CAS  PubMed  Google Scholar 

  5. Shchemelinin, S., Breskin, A., Chechik, R., Pansky, A., and Colautti, P.,Microdosimetry — An interdisciplinary approach, The Royal Society of Chemistry, Cambridge, 375–378, 1997.

  6. Shchemelinin, S., Breskin, A., Chechik, R., Pansky, A., Colautti, P., Conte, V., De Nardo, L., and Tornielli, G.,Ionization measurements in small gas samples by single ion counting, Nucl Instr Meth A. 368: 859–861, 1996.

    Article  CAS  Google Scholar 

  7. Shchemelinin, S., Breskin, A., Chechik, R., Colautti, P., and Schulte, R.W.,First ionization cluster measurements on the DNA scale in a wall-less sensitive volume, Radiat Prot Dosimetry. 82: 43–50, 1999.

    CAS  Google Scholar 

  8. Chmelewski, D., Parmentier, N., and Le Grand, J.,Proceedings of the Fourth Symposium on Microdosimetry, EUR 5122 d-e-f, CEC, Luxemburg, 869, 1973.

  9. Breskin, A., Chechik, R., Colautti, P., Conte, V., Pansky, A., Shchemelinin, S., Talpo, G., and Tornielli, G.,A single-electron counter for nanodosimetry. Radiat Prot Dosimetry. 61: 199–204, 1995.

    CAS  Google Scholar 

  10. Schulte, R., Bashkirov, V., Shchemelinin, S., Garty, G., Chechik, R., and Breskin, A.,Modeling of radiation action based on nanodosimetric event spectra, Phys Med. XVII: 177–180, 2001.

    Google Scholar 

  11. Garty, G., Shchemelinin, S., Breskin, A., Chechik, R., Assaf, G., Orion, I., Bashkirov, V., Schulte, R., and Grosswendt, B.,The performance of a novel ion-counting nanodosimeter, Nucl Instrum Methods Phys Res A. 492: 212–235, 2002.

    Article  CAS  Google Scholar 

  12. Nikjoo, H., O…Neill, P., Terrissol, M., and Goodhead, D.T.,Quantitative modelling of DNA damage using Monte Carlo track structure, Radiat Environ Biophys. 38: 31–38, 1999.

    Article  CAS  PubMed  Google Scholar 

  13. Nikjoo, H., O…Neill, P., Wilson, W.E., and Goodhead, D.T.,Computational approach for determining the spectrum of DNA damage induced by ionizing radiation, Radiat Res. 156: 577–583, 2001.

    Article  CAS  PubMed  Google Scholar 

  14. Sutherland, B.M., Bennett, P.V., Sidorkina, O., and Laval, J.,Clustered damages and total lesions induced in DNA by ionizing radiation: oxidized bases and strand breaks, Biochemistry. 39: 8026–8031, 2000.

    Article  CAS  PubMed  Google Scholar 

  15. Milligan, J.R., Aguilera, J.A., Paglinawan, R.A., Ward, J.F., and Limoli, C.L.,DNA strand break yields after post-high LET irradiation incubation with endonuclease-III and evidence for hydroxyl radical clustering, Int J Radiat Biol. 77: 155–164, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Shao, C., Saito, M., and Yu, Z.,Formation of single- and double-strand breaks of pBR322 plasmid irradiated in the presence of scavengers, Radiat Environ Biophys. 38: 105–109, 1999.

    Article  CAS  PubMed  Google Scholar 

  17. Milligan, J.R., Aguilera, J.A., Nguyen, T.T., Paglinawan, R.A., and Ward, J.F.,DNA strand-break yields after postirradiation incubation with base excision repair endonucleases implicate hydroxyl radical pairs in doublestrand break formation, Int J Radiat Biol. 76: 1475–1483, 2000.

    Article  CAS  PubMed  Google Scholar 

  18. Nikjoo H, O…Neill P, Wilson WE, and Goodhead DT.,Computational approach for determining the spectrum of DNA damage induced by ionizing radiation, Radiat Res. 156: 577–583, 2001.

    Article  CAS  PubMed  Google Scholar 

  19. Loeffler, J.S., Smith, A.R., and Suit, H.D.,The potential role of proton beams in radiation oncology, Semin Oncol. 24: 686–695, 1997.

    CAS  PubMed  Google Scholar 

  20. Orecchia, R., Zurlo, A., Loasses, A., Krengli, M., Tosi, G., Zurrida, S., Zucali, P., and Veronesi, U.,Particle beam therapy (hadron therapy): basis for interest and clinical experience, Eur J Cancer. 34: 459–468, 1998.

    Article  CAS  PubMed  Google Scholar 

  21. Kraft, G.,Radiotherapy with heavy ions: radiobiology, clinical indications and experience at GSI, Darmstadt, Tumori. 84: 200–204, 1998.

    CAS  PubMed  Google Scholar 

  22. Gerweck, L.E., and Kozin, S.V.,Relative biological effectiveness of proton beams in clinical therapy, Radiother Oncol. 50: 135–142, 1999.

    Article  CAS  PubMed  Google Scholar 

  23. Robertson, J.B., Eaddy, J..M., Archambeau,, J.O., Coutrakon, G.B., Miller, D.W., Moyers, M..F., Siebers, J.V., Slater, J.M., and Dicello, J.F.,Relative biological effectiveness and microdosimetry of a mixed energy field of protons up to 200 MeV, Adv Space Res. 14: 271–275, 1994.

    Article  CAS  PubMed  Google Scholar 

  24. Jones, B., and Dale, R.G.,Estimation of optimum dose per fraction for high LET radiations: implications for proton radiotherapy, Int. J. Radiat. Oncol. Biol. Phys. 48: 1549–1557, 2000.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schulte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulte, R., Bashkirov, V., Garty, G. et al. Ion-counting nanodosimetry: current status and future applications. Australas. Phys. Eng. Sci. Med. 26, 149–155 (2003). https://doi.org/10.1007/BF03179174

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179174

Key words

Navigation