Skip to main content
Log in

Dynamics of the biopolymers in articular cartilage studied by magic angle spinning NMR

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

To understand the viscoelastic properties of cartilage tissue and for the development of tissue-engineered cartilage, we have studied the physicochemical properties of bovine nasal and pig articular cartilage by13C nuclear magnetic resonance (NMR) methods. The major macromolecular components of cartilage can be investigated individually by applying13C high-resolution (HR) NMR with scalar decoupling (for the polysaccharide component) and solid-state NMR with dipolar decoupling (for the collagen component). Partially resolved NMR spectra of the cartilage polysaccharides can be obtained by HR13C NMR indicating that these polysaccharides are highly mobile. Resonance lines have been assigned to chondroitin sulfate, the most mobile component of cartilage. To characterize time scales of molecular motions, we have measuredT 1 andT 2 relaxation times as a function of temperature and analyzed these data by means of a broad distribution of molecular correlation times. Typical correlation times for the large amplitude motions of chondroitin sulfate are of the order of 0.1–10 ns. For the detection and dynamical characterization of the cartilage collagen cross-polarization magic angle spinning (CP MAS) and high-power decoupling are indispensable.13C CP MAS spectra of cartilage are dominated by resonances from rigid collagen, while only low-intensity signals from the polysaccharides are observed. The good sensitivity at a magnetic field strength of 17.6 T allows the site-specific investigation of cartilage collagen dynamics by two-dimensional NMR methods. The cartilage collagen is essentially rigid with low-amplitude segmental motions on the fast time scale. Considering the high water content of cartilage and the almost isotropic mobility of the chondroitin sulfate molecules it is remarkable how little this affects the collagen dynamics. The dynamics of cartilage macromolecules is broadly distributed from almost completely rigid to highly mobile, which lends cartilage its mechanical strength and shock-absorbing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meachim G., Stockwell R.A. in: Adult Articular Cartilage (Freeman M.A.R., ed.), pp. 69–144. London: Pitman Medical 1977.

    Google Scholar 

  2. Flugge L.A., Miller-Deist L.A., Petillo P.A.: Chem. Biol.6, 57 (1999)

    Google Scholar 

  3. Maroudas A. in: Methods in Cartilage Research (Maroudas A., Kuetter K., eds.), p. 211. London: Academic Press 1990.

    Google Scholar 

  4. Eyre D.: Arthritis Res.4, 30 (2002)

    Article  Google Scholar 

  5. Scott J.E.: Pathol. Biol. (Paris)49, 284 (2001)

    Google Scholar 

  6. Creighton T.E.: Proteins: Structures and Molecular Properties. New York: Freeman 1993.

    Google Scholar 

  7. Scott J.E.: J. Biochem. Mol. Biol. Biophys.2, 155 (1999)

    Google Scholar 

  8. Chakrabarti B., Park J.W.: CRC Crit Rev. Biochem.,8, 225 (1980)

    Article  Google Scholar 

  9. Poole A.R.: Biochem. J.236, 1 (1986)

    Google Scholar 

  10. Comper W.D., Laurent T.C.: Physiol Rev.58, 255 (1978)

    Google Scholar 

  11. Cohen N.P., Foster R.J., Mow V.C.: J. Orthop. Sports Phys. Ther.28, 203 (1998)

    Google Scholar 

  12. Tomlins A.M., Foxall P.J.D., Lindon J.C., Lynch M.J., Spraul M., Everett J.R., Nicholson J.K.: Anal. Commun.35, 113 (1998)

    Article  Google Scholar 

  13. Stejskal E.O., Schaefer J.: J. Am. Chem. Soc.98, 1031 (1976)

    Article  Google Scholar 

  14. Torchia D.A., Hasson M.A., Hascall V.C.: J. Biol. Chem.252, 3617 (1977)

    Google Scholar 

  15. Brewer C.F., Keiser H.: Proc. Natl. Acad. Sci. USA.72, 3421 (1975)

    Article  ADS  Google Scholar 

  16. Naji L., Kaufmann J., Huster D., Schiller J., Arnold K.: Carbohydr. Res.327, 439 (2000)

    Article  Google Scholar 

  17. Schiller J., Naji L., Huster D., Kaufmann J., Arnold K.: MAGMA13, 19 (2001)

    Article  Google Scholar 

  18. Huster D., Schiller J., Arnold K.: Magn. Res. Med.48, 624 (2002)

    Article  Google Scholar 

  19. Vold R.L., Waugh J.S., Klein M.P., Phelps D.E.: J. Chem. Phys.48, 3831 (1968)

    Article  ADS  Google Scholar 

  20. Meiboom S., Gill D.: Rev. Sci. Instrum.29, 688 (1958)

    Article  ADS  Google Scholar 

  21. Carr H.Y., Purcell E.M.: Phys. Rev.94, 630 (1954)

    Article  ADS  Google Scholar 

  22. Bennett A.E., Rienstra C.M., Auger M., Lakshmi K.V., Griffin R.G.: J. Chem. Phys.103, 6951 (1995)

    Article  ADS  Google Scholar 

  23. Munowitz M.G., Griffin R.G., Bodenhausen G., Huang T.H.: J. Am. Chem. Soc.103, 2529 (1981)

    Article  Google Scholar 

  24. Schaefer J., Stejskal E.O., McKay R.A., Dixon W.T.: J. Magn. Reson.52, 123 (1983)

    Google Scholar 

  25. Hong M., Gross J.D., Griffin R.G.: J. Phys. Chem.101, 5869 (1997)

    Google Scholar 

  26. Bielecki A., Kolbert A.C., Levitt M.H.: Chem. Phys. Lett.155, 341 (1989)

    Article  ADS  Google Scholar 

  27. Huster D., Xiao L., Hong M.: Biochemistry40, 7662 (2001)

    Article  Google Scholar 

  28. Maricq M.M., Waugh J.S.: J. Chem. Phys.70, 3300 (1979)

    Article  ADS  Google Scholar 

  29. Webb G.G., Zilm K.W.: J. Am. Chem. Soc.111, 2455 (1989)

    Article  Google Scholar 

  30. Palmer A.G. III, Williams J., McDermott A.: J. Phys. Chem.100, 13293 (1996)

    Article  Google Scholar 

  31. Hong M.: J. Am. Chem. Soc.122, 3762 (2000)

    Article  Google Scholar 

  32. Lipari G., Szabo A.: J. Am. Chem. Soc.104, 4546 (1982)

    Article  Google Scholar 

  33. Lipari G., Szabo A.: J. Am. Chem. Soc.104, 4559 (1982)

    Article  Google Scholar 

  34. Huster D., Schiller J., Naji L., Kaufmann J., Arnold K. in: NMR Studies of Cartilage: Dynamics, Diffusion and Degradation (Haberland R., Poppl A., Stannarius R., Michel D., eds.), pp. 465–503. Berlin: Springer 2004.

    Google Scholar 

  35. Schaefer J.: Macromolecules6, 882 (1973)

    Article  ADS  Google Scholar 

  36. Lyerla J.R. Jr., Torchia D.A.: Biochemistry14, 5175 (1975)

    Article  Google Scholar 

  37. Saito H., Yokoi M.: J. Biochem. (Tokyo)111, 376 (1992)

    Google Scholar 

  38. Griffin R.G.: Nat. Struct. Biol.5, 508 (1998)

    Article  Google Scholar 

  39. Bennett A.E., Griffin R.G., Vega S.: Recoupling of Homo- and Heteronuclear Dipolar Interactions, pp. 3–77. Berlin: Heidelberg 1994.

  40. Dusold S., Seebald A.: Annu. Rep. NMR Spectrosc.41, 185 (2000)

    Article  Google Scholar 

  41. Schmidt-Rohr K., Spiess H.W.: Multidimensional Solid-State NMR and Polymers. San Diego: Academic Press 1994.

    Google Scholar 

  42. Jelinski L.W., Sullivan C.E., Torchia D.A.: Nature284, 531 (1980)

    Article  ADS  Google Scholar 

  43. Batchelder L.S., Sullivan C.E., Jelinski L.W., Torchia D.A.: Proc. Natl. Acad. Sci. USA79, 386 (1982)

    Article  ADS  Google Scholar 

  44. Sarkar S.K., Sullivan C.E., Torchia D.A.: J. Biol. Chem.284, 9762 (1983)

    Google Scholar 

  45. Sarkar S.K., Sullivan C.E., Torchia D.A.: Biochemistry24, 2348 (1985)

    Article  Google Scholar 

  46. Sarkar S.K., Hiyama Y., Niu C.H., Young P.E., Gerig J.T., Torchia D.A.: Biochemistry26, 6793 (1987)

    Article  Google Scholar 

  47. Reichert D., Pascui O., deAzevedo E.R., Bonagamba T.J., Arnold K., Huster D.: Magn. Reson. Chem.42, 276 (2004)

    Article  Google Scholar 

  48. Cross T.A., Opella S.J.: J. Mol. Biol.159, 543 (1982)

    Article  Google Scholar 

  49. Grodzinsky A.J., Urban J.P. in: Physical Regulation of Metabolism in Cartilaginous Tissues: Relation to Extracellular Forces and Flows (Reed R.K., ed.), pp. 67–84. London: Portland Press 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Huster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huster, D., Naji, L., Schiller, J. et al. Dynamics of the biopolymers in articular cartilage studied by magic angle spinning NMR. Appl. Magn. Reson. 27, 471–487 (2004). https://doi.org/10.1007/BF03166744

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166744

Keywords

Navigation