Skip to main content
Log in

Influence of structural dynamics on charge recombination rates in photogenerated radical ion pairs: Evidence from EPR spectroscopy and computation

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In order to better understand the dependence of charge recombination rate vs. temperaturek CR(T) within a linear donor-chromophore-acceptor (D-C-A) molecular triad, the structural dynamics of the cation radical D+-C is studied individually using variable-temperature electron paramagnetic resonance (EPR) spectroscopy and electronic structure calculations. Here, the donor D isp-methoxyaniline, the chromophore C is 4-(N-piperidinyl)-naphthalene-1,8-dicarboximide, and the acceptor A is naphthalene-1,8∶4,5-bis(dicarboximide). The EPR spectra of D+-C exhibit marked changes in their overall shape throughout the 190–295 K temperature range. These spectra have hyperfine splittings that are strikingly well simulated with a model that includes methoxy group rotation, which occurs at a rate of 2.6 · 104 s−1 at 210 K and speeds up to 1.25 · 107 s−1 at 295 K, corresponding to an energy barrier of 38 kJ/mol. This considerable barrier reflects the partial conjugation between MeO and the aromatic ring and is confirmed by the calculated energy of a series of D+ ·-C rotamers. The simulations also reveal that inversion of the anilino N center emerges atT > 250 K and can be represented by a planar and a pyramidal conformation with the equilibrium constantK = [pyramidal]/[planar] increasing from 0.029 at 250 K to 0.56 at 295 K. In the same temperature range, the charge recombination rate of D+ ·-C-A− · accelerates abruptly and can be separated into two components, according to the above planar/pyramidal equilibrium. Thek CR (T) of the pyramidal conformation has an activation energy of 41 kJ/mol, virtually the same as the barrier of MeO rotation. These results show that the intramolecular structural dynamics of the radical cation within D-C-A− · control the overall charge recombination reaction with this radical ion pair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plato M., Möbius K., Michel-Beyerle M.E., Bixon M., Jortner J.: J. Am. Chem. Soc.110, 7279–7285 (1988)

    Article  Google Scholar 

  2. Deisenhofer J., Norris J.R. (eds.): The Photosynthetic Reaction Center. San Diego: Academic Press 1993.

    Google Scholar 

  3. Closs G.L>, Miller J.R.: Science240, 440–447 (1988)

    Article  ADS  Google Scholar 

  4. Wasielewski M.R.: Chem. Rev.92, 435–461 (1992)

    Article  Google Scholar 

  5. Gust D., Moore T.A., Moore A.L.: Acc. Chem. Res.26, 198–205 (1993)

    Article  Google Scholar 

  6. Davis W.B., Svec W.A., Ratner M.A., Wasielewski M.R.: Nature396, 60–63 (1998)

    Article  ADS  Google Scholar 

  7. Schmidt-Mende L., Fechtenkotter A., Müllen K., Moons E., Friend R.H., MacKenzie J.D.: Science293, 1119–1122 (2001)

    Article  ADS  Google Scholar 

  8. Hoppe H., Sariciftci N.S.: J. Mater. Res.19, 1924–1945 (2004)

    Article  ADS  Google Scholar 

  9. Weiss E.A., Tauber M.J., Kelley R.F., Ahrens M.J., Ratner M.A., Wasielewski M.R.: J. Am. Chem. Soc.127, 11842–11850 (2005)

    Article  Google Scholar 

  10. Weiss E.A., Tauber M.J., Ratner M.A., Wasielewski M.R.: J. Am. Chem. Soc.127, 6052–6061 (2005)

    Article  Google Scholar 

  11. Greenfield S.R., Svec W.A., Gosztola D., Wasielewski M.R.: J. Am. Chem. Soc.118, 6767–6777 (1996)

    Article  Google Scholar 

  12. Hasharoni K., Levanon H., Greenfield S.R., Gosztola D.J., Svec W.A., Wasielewski M.R.: J. Am. Chem. Soc.118, 10228–10235 (1996)

    Article  Google Scholar 

  13. Lukas A.S., Bushard P.J., Weiss E.A., Wasielewski M.R.: J. Am. Chem. Soc.125, 3921–3930 (2003)

    Article  Google Scholar 

  14. Shaakov S., Galili T., Stavitski E., Levanon H., Lukas A., Wasielewski M.R.: J. Am. Chem. Soc. 125, 6563–6572 (2003)

    Article  Google Scholar 

  15. Weiss E.A., Ratner M.A., Wasielewski M.R.: J. Phys. Chem. A107, 3639–3647 (2003)

    Article  Google Scholar 

  16. Weiss E.A., Chernick E.T., Wasielewski M.R.: J. Am. Chem. Soc.126, 2326–2327 (2004)

    Article  Google Scholar 

  17. Mi Q., Chernick E.T., McCamant D.W., Weiss E.A., Ratner M.A., Wasielewski M.R.: J. Phys. Chem. A110, 7323–7333 (2006)

    Article  Google Scholar 

  18. Chernick E.T., Mi Q., Kelley R.F., Weiss E.A., Jones B.A., Marks T.J., Ratner M.A., Wasielewski M.R.: J. Am. Chem. Soc.128, 4356–4364 (2006)

    Article  Google Scholar 

  19. Dutton P.L., Seibert M., Leigh J.S.: Biochem. Biophys. Res. Commun.46, 406–413 (1972)

    Article  Google Scholar 

  20. Smirnov S.N., Braun C.L.: Rev. Sci. Instrum69, 2875–2887 (1998)

    Article  ADS  Google Scholar 

  21. Muus L.T., Atkins P.W., McLauchlan K.A., Pedersen J.B. (eds.): Chemically Induced Magnetic Polarization. Dordrecht: Reidel 1977.

    Google Scholar 

  22. Closs G.L., Forbes M.D.E., Norris J.R.: J. Phys. Chem.91, 3592–3599 (1987)

    Article  Google Scholar 

  23. Prisner T., Dobbert O., Dinse K.P., Van Willigen H.: J. Am. Chem. Soc.110, 1622–1623 (1988)

    Article  Google Scholar 

  24. Kothe G., Weber S., Ohmes E., Thurnauer M.C., Norris J.R.: J. Am. Chem. Soc.116, 7729–7734 (1994)

    Article  Google Scholar 

  25. Zech S.G., Bittl R., Gardiner A.T., Lubitz W.: Appl. Magn. Reson.13, 517–529 (1997)

    Article  Google Scholar 

  26. Berliner L.J., Eaton G.R., Eaton S.S. (eds.): Distance Measurements in Biological Systems by EPR. Biological Magnetic Resonance, vol. 19. New York: Kluwer Academic Plenum 2000.

    Google Scholar 

  27. Wegener C., Savitsky A., Pfeiffer M., Möbius K., Steinhoff H.J.: Appl. Magn. Reson.21, 441–452 (2001)

    Article  Google Scholar 

  28. Möbius K., Savitsky A., Wegener C., Rato M., Fuchs M., Schnegg A., Dubinskii A.A., Grishin Y.A., Grigor’ev I.A., Kuhn M., Duche D., Zimmermann H., Steinhoff H.J.: Magn. Reson. Chem.43, S4-S19 (2005)

    Article  Google Scholar 

  29. Schneider D.J., Freed J.H.: Adv. Chem. Phys.73, 387–527 (1989)

    Article  Google Scholar 

  30. Kothe G., Weber S., Ohmes E., Thurnauer M.C., Norris J.R.: J. Phys. Chem.98, 2706–2712 (1994)

    Article  Google Scholar 

  31. Polimeno A., Zerbetto M., Franco L., Maggini M., Corvaja C.: J. Am. Chem. Soc.128, 4734–4741 (2006)

    Article  Google Scholar 

  32. Shine H.J., Padilla A.G., Wu S.M.: J. Org. Chem.44, 4069–4075 (1979)

    Article  Google Scholar 

  33. Kass H., Bittersmann-Weidlich E., Andreasson L.E., Bonigk B., Lubitz W.: Chem. Phys.194, 419–432 (1995)

    Article  Google Scholar 

  34. Gaussian 98, Revision A.7. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Zakrzewski V.G., Montgomery J.A. Jr., Stratmann R.E., Burant J.C., Dapprich S., Millam J.M., Daniels A.D., Kudin K.N., Strain M.C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G.A. Ayala P.Y., Cui Q., Morokuma K., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Cioslowski J., Ortiz J.V., Baboul A.G., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Andres J.L., Gonzalez C., Head-Gordon M., Replogle E.S., Pople J.A. Pittsburgh, Pa.: Gaussian, Inc. 1998.

    Google Scholar 

  35. Becke A.D.: J. Chem. Phys.98, 5648–5652 (1993)

    Article  ADS  Google Scholar 

  36. Lee C.T., Yang W.T., Parr R.G.: Phys. Rev. B37, 785–789 (1988)

    Article  ADS  Google Scholar 

  37. Barone V. in: Recent Advances in Density Functional Methods (Chong D.P., ed.), vol. 1, pp. 287–334. Singapore: World Scientific 1995.

    Google Scholar 

  38. Duling D.R.: J. Magn. Reson. B104, 105–110 (1994)

    Article  Google Scholar 

  39. Carrington A., McLachlan A.D.: Introduction to Magnetic Resonance with Applications to Chemistry and Chemical Physics, pp. 205–208. New York: Harper and Row 1967.

    Google Scholar 

  40. Gosztola D., Niemczyk M.P., Svec W., Lukas A.S., Wasielewski M.R.: J. Phys. Chem. A104, 6545–6551 (2000)

    Article  Google Scholar 

  41. Mes G.F., Vanramesdonk H.J., Verhoeven J.W.: J. Am. Chem. Soc.106, 1335–1340 (1984)

    Article  Google Scholar 

  42. Gerson F., Huber W.: Electron Spin Resonance Spectroscopy of Organic Radicals, pp. 61–64. Weinheim: Wiley-VCH 2003.

    Book  Google Scholar 

  43. Marcus R.A.: J. Chem. Phys.43, 679–701 (1965)

    Article  ADS  Google Scholar 

  44. Marcus R.A.: J. Chem. Phys.24, 966–978 (1956)

    Article  ADS  Google Scholar 

  45. Schatz G.C., Ratner M.A.: Quantum Mechanics in Chemistry, pp. 216–218. Mineola, N.Y.: Dover Publications 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mi, Q., Weiss, E.A., Ratner, M.A. et al. Influence of structural dynamics on charge recombination rates in photogenerated radical ion pairs: Evidence from EPR spectroscopy and computation. Appl. Magn. Reson. 31, 253–270 (2007). https://doi.org/10.1007/BF03166260

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166260

Keywords

Navigation