Skip to main content
Log in

Exploring the photoexcited triplet states of aluminum and tin corroles by time-resolved Q-band EPR

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The photoexcited triplet states of three 5,10, 15-tris(pentafluorophenyl)corroles (tpfc), hosting Sn(IV) and Al(III) in their core, namely, Sn(Cl)(tpfc), Al(pyr)2(tpfc) and Al(pyr)2(tpfc-Br8), were studied by time-resolved electron paramagnetic resonance (TREPR) spectroscopy in the nematic liquid crystal E7. Only two of these metallocorroles, namely, Sn(Cl)(tpfc) and Al(pyr)2(tpfc-Br8), exhibit TREPR spectra following pulsed laser excitation. This result is rationalized in terms of a very low quantum yield of triplet formation in Al(pyr)2(tpfc). Analysis of the spin polarized Q-band (34 GHz) EPR spectra of Sn(Cl)(tpfc) and Al(pyr)2(tpfc-Br8) provides detailed information on the magnetic and kinetic parameters of the triplet states as well as on the molecular ordering of the complexes in the liquid crystal. With the assignment of the zero-field splitting parameterD<0 for the Sn(Cl)(tpfc) and Al(pyr)2(tpfc-Br8), one can evaluate the dominant intersystem crossing path for these metallocorroles. Analysis reveals that in Sn(Cl)(tpfc) the in-plane triplet sublevels are preferentially populated, i.e.,A X, AYA Z. This can be rationalized in terms of weak electronic interactions between the Sn(IV) ion and the corrole π-system, consistent with the domed structure of Sn(Cl)(tpfc). In Al(pyr)2(tpfc-Br8), however, the out-of-plane triplet sublevel is predominantly populated, i.e.,A Z>A X, AY, which is attributed to a large increase in the spin-orbit coupling strength arising from the peripheral bromine atoms on the corrole skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson A.W., Kay I.T.: J. Chem. Soc. 1620–1629 (1965)

  2. Will S., Rahbar A., Schmickler H., Lex J., Vogel E.: Angew. Chem. Int. Ed. Engl.29, 1390–1393 (1990)

    Article  Google Scholar 

  3. Gross Z., Galili N., Simkhovich L., Saltsman I., Botoshansky M., Blaser D., Boese R., Goldberg I.: Org. Lett.1, 599–602 (1999)

    Article  Google Scholar 

  4. Gross Z.: J. Biol. Inorg. Chem.6, 733–738 (2001)

    Article  Google Scholar 

  5. Ding T., Aleman E.A., Modarelli D.A., Ziegler C.J.: J. Phys. Chem. A109, 7411–7417 (2005)

    Article  Google Scholar 

  6. Nardis S., Monti D., Paolesse R.: Mini-Rev. Org. Chem.2, 355–372 (2005)

    Article  Google Scholar 

  7. Kadish K.M., Erben C., Ou Z.P., Adamian V.A., Will S., Vogel E.: Inorg. Chem.39, 3312–3319 (2000)

    Article  Google Scholar 

  8. Goldberg D.P., Ramdhanie B., Mandimutsira B.S., Wang H.L., Fox J.P.: J. Inorg. Biochem.96, 21–21 (2003)

    Article  Google Scholar 

  9. Erlen C., Will S., Kadish K.M. in: The Porphyrin Handbook (Kadish K.M., Smith K.M., Guilard R., eds.), vol. 2, pp. 233–300, New York: Academic Press 2000.

    Google Scholar 

  10. Gross Z., Simkhovich L., Mahammed A., Golubkov G.: J. Inorg. Biochem.86, 53 (2001)

    Google Scholar 

  11. Gross Z., Gray H.B.: Adv. Synth. Catal.346, 165–170 (2004)

    Article  Google Scholar 

  12. Mahammed A., Gray H.B., Meier-Callahan A.E., Gross Z.: J. Am. Chem. Soc.125, 1162–1163 (2003)

    Article  Google Scholar 

  13. Stolzenberg A.M., Stersich M.T.: J. Am. Chem. Soc.110, 6391–6402 (1988)

    Article  Google Scholar 

  14. Grodkowski J., Neta P., Fujita E., Mahammed A., Simkhovich L., Gross Z.: J. Phys. Chem. A106, 4772–4778 (2002)

    Article  Google Scholar 

  15. Battersby A.R., McDonald E., in: Porphyrins and Metalloporphyrins (Smith KM., ed.), pp. 61–122, Amsterdam: Elsevier 1975.

    Google Scholar 

  16. Harriman A. in: Energy Resources through Photochemistry and Catalysis (Graetzel M., ed.), pp. 163–215, New York: Academic Press 1983.

    Google Scholar 

  17. Morgan B., Dolphin D. in: Metal Complexes with Tetrapyrrole Ligands (Buchler J.W., ed.), pp. 115–203. Berlin: Springer 1987.

    Chapter  Google Scholar 

  18. Mody T.D., Sessler J.L. in: Supramolecular Materials and Technologies (Reinhoudt D.N., ed.), pp. 245–294, New York: Wiley 1999.

    Google Scholar 

  19. Paolesse R., Di Natale C., Macagnano A., Sagone F., Scarselli M.A., Chiaradia P., Troitsky V.I., Berzina T.S., D’Amico A.: Langmuir15, 1268–1274 (1999)

    Article  Google Scholar 

  20. Paolesse R., Sagone F., Macagnano A., Boschi T., Prodi L., Montalti M., Zaccheroni N., Bolletta F., Smith K.M.: J. Porphyrins Phthalocyanines3, 364–370 (1999)

    Article  Google Scholar 

  21. Barbe J.M., Canard G., Brandes S., Jerome F., Dubois G., Guilard R.: J. Chem. Soc. Dalton Trans.8, 1208–1214 (2004)

    Google Scholar 

  22. Aviezer D., Cotton S., David M., Segev A., Khaselev N.: Cancer Res.60, 2973–2980 (2000)

    Google Scholar 

  23. Weaver J.J., Sorasaenee K., Sheikh M., Goldschmidt R., Tkachenko E., Gross Z., Gray H.B.: J Porphyrins Phthalocyanines8, 76–81 (2004)

    Article  Google Scholar 

  24. Eschenmoser A.: Angew. Chem. Int. Ed. Engl.27, 5–39 (1988)

    Article  Google Scholar 

  25. Mahammed A., Gross Z.: J. Am. Chem. Soc.127, 2883–2887 (2005)

    Article  Google Scholar 

  26. Gonen O., Levanon H.: J. Phys. Chem.89, 1637–1643 (1985)

    Article  Google Scholar 

  27. Gonen O., Levanon H.: J. Chem. Phys.84, 4132–4141 (1986)

    Article  ADS  Google Scholar 

  28. Fessmann J., Rosch N., Ohmes E., Kothe G.: Chem. Phys. Lett.152, 491–496 (1988)

    Article  ADS  Google Scholar 

  29. Münzenmaier A., Rosch N., Weber S., Feller C., Ohmes E., Kothe G.: J. Phys. Chem.96, 10645–10653 (1992)

    Article  Google Scholar 

  30. Shuali Z., Berg A., Levanon H., Vogel E., Broring M., Sessler J.L., Fowler C.J., Weghorn S.J.: Chem. Phys. Lett.300, 687–694 (1999)

    Article  ADS  Google Scholar 

  31. Stavitski E., Berg A., Ganguly T., Mahammed A., Gross Z., Levanon H.: J. Am. Chem. Soc.126, 6886–6890 (2004)

    Article  Google Scholar 

  32. Simkhovich L., Mahammed A., Goldberg I., Gross Z.: Chem. Eur. J.7, 1041–1055 (2001)

    Article  Google Scholar 

  33. Mahammed A., Gross Z.: J. Inorg. Biochem.88, 305–309 (2002)

    Article  Google Scholar 

  34. Cherkasov F.G., Denisenko G.A., Vital A.Y., L’vov S.G. in: Book of Abstracts of the XXVIIth Congress Ampere on Magnetic Resonance and Related Phenomena, pp. 416–417, Kazan: Zavoisky Physical-Technical Institute 1994.

    Google Scholar 

  35. Heinen U., Berthold T., Kothe G., Stavitski E., Galili T., Levanon H., Wiederrecht G., Wasielewski M.R.: J. Phys. Chem. A106, 1933–1937 (2002)

    Article  Google Scholar 

  36. Regev A., Galili T., Levanon H.: J. Chem. Phys.95, 7907–7916 (1991)

    Article  ADS  Google Scholar 

  37. Hiromitsu I., Kevan L.: J. Chem. Phys.88, 691–695 (1988)

    Article  ADS  Google Scholar 

  38. Regev A., Berman A., Levanon H., Murai T., Sessler J.L.: Chem. Phys. Lett.160, 401–406 (1989)

    Article  ADS  Google Scholar 

  39. Levanon H.: Rev. Chem. Interned.8, 287–320 (1987)

    Article  Google Scholar 

  40. Kim S.S., Weissman S.I.: Rev. Chem. Intermed.3, 107–120 (1979)

    Article  Google Scholar 

  41. Zybailov B., van der Est A., Zech S.G., Teutloff C., Johnson T.W., Shen G.Z., Bittl R., Stehlik D., Chitnis P.R., Golbeck J.H.: J. Biol. Chem.275, 8531–8539 (2000)

    Article  Google Scholar 

  42. van Tol J., Brunel L.C., Angerhofer A.: Appl. Magn. Reson.21, 335–340 (2001)

    Article  Google Scholar 

  43. Balaz Y.S., Saltsman I., Mahammed A., Tkachenko E., Golubkov G., Levine J., Gross Z.: Magn. Reson. Chem.42, 624–635 (2004)

    Article  Google Scholar 

  44. Chan I.Y., van Dorp W.G., Schaafsma T.J., van der Waals J.H.: Mol. Phys.22, 741–751 (1971)

    Article  ADS  Google Scholar 

  45. Ishii K., Abiko S., Kobayashi N.: Inorg. Chem.39, 468–472 (2000)

    Article  Google Scholar 

  46. Metz F., Friedrich, S., Hohlneicher G.: Chem. Phys. Lett.16, 353–353 (1972)

    Article  ADS  Google Scholar 

  47. Scheidt W.R., Lee Y.J.: Struct. Bonding64, 1–70 (1987)

    Article  Google Scholar 

  48. Bendix J., Dmochowski I.J., Gray H.B., Mahammed A., Simkhovich L., Gross Z.: Angew. Chem. Int. Ed.39, 4048–4051 (2000)

    Article  Google Scholar 

  49. Berman A., Michaeli A., Feitelson J., Bowman M.K., Norris J.R., Levanon H., Vogel E., Koch P.: J. Phys. Chem.96, 3041–3047 (1992)

    Article  Google Scholar 

  50. Toporowicz M., Ofir H., Levanon H., Vogel E., Köcher M., Fessenden R.W.: Photochem. Photobiol.50, 353–360 (1989)

    Article  Google Scholar 

  51. Scheidt W., Mondal J., Eigenbrot C., Adler A., Radonovich L., Hoard J.: Inorg. Chem.25, 795–799 (1986)

    Article  Google Scholar 

  52. Harriman A., Osborne A.D.: J. Chem. Soc. Faraday Trans. 179, 765–772 (1983)

    Article  Google Scholar 

  53. Gentemann S., Medforth C.J., Forsyth T.P., Nurco D.J., Smith K.M., Fajer J., Holten D.: J. Am. Chem. Soc.116, 7363–7368 (1994)

    Article  Google Scholar 

  54. D’Souza F., Zandler M.E., Tagliatesta P., Ou Z., Shao J., van Caemelbecke E., Kadish K.M.: Inorg. Chem.,37, 4567–4572 (1998)

    Article  Google Scholar 

  55. Paolesse R., Nardis, S., Sagone F., Khoury R.G.: J. Org. Chem.66, 550–556 (2001)

    Article  Google Scholar 

  56. Gouterman M., Schwarz F.P., Smith P.D., Dolphin D.: J. Chem. Phys.59, 676–690 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagnert, L., Berg, A., Stavitski, E. et al. Exploring the photoexcited triplet states of aluminum and tin corroles by time-resolved Q-band EPR. Appl. Magn. Reson. 30, 591–604 (2006). https://doi.org/10.1007/BF03166220

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166220

Keywords

Navigation