Skip to main content
Log in

EPR spectroscopic characterization of biological thiyl radicals as PBN spin-trap adducts

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

While the importance of thiols and their derivatives in biological processes is widely appreciated, the elucidation of the roles played by thiyl radicals in these processes — being hampered by the radical reactivity that makes their detection and characterization difficult — is lagging. The results of a spin-trap EPR study are reported which advance the capability for detecting and identifying thiyl radicals. Adducts with PBN (α-phenyl-N-t-butylnitrone) of thiyl radicals derived from the biologically abundant low-molecular-weight thiols cysteine, homocysteine, and glutathione are examined. Significant differences in the β-proton hyperfine couplings of the various adducts are observed; both the EPR lineshapes and the radical adduct lifetimes show trends reflective of the molecular size of the trapped thiyl radical. These results indicate that EPR spectroscopy can be useful in identifying specific thiyl radicals that may be involved in the biochemical reactions of low-molecular-weight thiols, protein thiols, and their derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jocelyn P.C.: Biochemistry of the Sulfhydryl Group. New York: Academic Press 1972.

    Google Scholar 

  2. Jocelyn P.C. in: Glutathione. Biochemistry Society Symposia (Crook E.M., ed.), vol. 17, pp. 43–65. New York: Academic Press 1959; Gaitonde M.K.: Biochem. J.104, 627–633 (1967)

    Google Scholar 

  3. Niroomand F., Possle R., Mulsch A., Bohme E.: Biochem. and Biophys. Res. Comm.161(1), 75–80 (1989); Stipanul M.H.: Ann. Rev. Nutr.6, 179–209 (1986); Greico A.L.: Am. J. Med. Sci.273(2), 120–132 (1977)

    Article  Google Scholar 

  4. Pascal I., Tarbell D.S.: J. Amer. Chem. Soc.79, 6015–6020 (1957); Schrauzer G.W., Sibert J.W.: Arch. Biochem. Biophys.130, 257–266 (1969); Thorn M.B., Jackson F.L.: Biochem. Biophys. Acta35, 65–76 (1959); Bigwood E.J., Thomas J.: C. R. Sceanc. Soc. Biol.120, 69–76 (1935); Keilin D.: Proc. R. Soc.106B, 418–444 (1930); Borsock H., Davenport H.W., Jeffreys C.E.P., Warner R.C.: J. Biol. Chem.117, 237–279 (1937); Michaelis L., Barron E.S.G.: J. Biol. Chem.81, 29–34 (1929); Rapkine L.: Ann. Physiol. Physico. Chim. Biol.9, 383–393 (1931).

    Article  Google Scholar 

  5. Schulz U., McCalla D.R.: Can. J. Chem.47, 2021–2027 (1969)

    Article  Google Scholar 

  6. Stamler J.S., Simon D., Osborne J., Mullins M., Jaraki O., Michel T., Singel D.J., Loscalzo J.: Proc. Natl. Acad. Sci.89, 444–448 (1992); Myers P.R., Miror Jr. R.L., Guerra Jr. R., Bates J.N., Harrison D.G.: Nature345, 161–163 (1990); Ignarro L.J.: Circ. Res.65, 1–21 (1989)

    Article  ADS  Google Scholar 

  7. Nelson D.J., Petersen R.L., Symons M.C.R.: J. C. S. Perkins II, 2005–2015 (1977)

    Article  Google Scholar 

  8. Janzen E.G. in: Free Radicals in Biology (Pryor W.A., ed.), vol. IV., pp. 115–154. New York: Academic Press 1980.

    Google Scholar 

  9. Perkins M.J.: Adv. Phys. Org. Chem.17, 16–64 (1980)

    Google Scholar 

  10. Buettner G.R.: Free Radical Biology & Medicine3, 259–303 (1987)

    Article  Google Scholar 

  11. Mottley C., Mason R.P. in: Biological Magnetic Resonance (Berliner, L.J., Reuben J., eds.), vol. 8, pp. 489–532, 1989.

  12. Saez G., Thommalley P.J., Hill H.A.O., Hems R., Bannister J.V.: Bioch. Bioph. Acta719, 24–31 (1982)

    Google Scholar 

  13. Graceffa P.: Arch. Bioch. Biophys.225, 802–808 (1983)

    Article  Google Scholar 

  14. Felix C.C., Raszka K., Sealy R.C.: Photochm. Photobiol.37, 141–147 (1983); Buettner G.R.: Febs Lett.177, 295–299 (1984); Fischer V., Harielson Jr. W.G., Chignell C.F., Mason R.P.: Photobiophys.7, 111–119 (1984); Josephy P.D., Rehorek D., Janzen E.G.: Tet. Lett.25, 1685–1688 (1984); Ross D., Albano E., Nilsson U., Moldeus P.: Bioch. Biophys. Res. Comm.125, 109–115 (1984); Boyd J.A., Eling T.E.: Env. Hlth. Persp.64, 45–51 (1985); Eling T.E., Mason R.P., Sivarajah K.: J. Biol. Chem.260, 1601–1607 (1985); Ross D., Moldeus P.: Env. Hlth. Persp.64, 253–257 (1985); Ross D., Norbeck K., Moldeus P.: J. Biol. Chem.260, 15028–15032 (1985); Ross D., Cotgreave I.K., Moldeus P.: Bioch. Bioph. Acta841, 278–282 (1985); Buettner G.R., Moltten A.G., Itall R.D., Cingell C.F.: Photochem. Photobiol44, 5–10 (1986); Kennedy C.H., Pryor W.A., Winston G.W., Church D.F.: Bioch. Biophys. Res. Comm.141, 1123–1129 (1986); Stock B.H., Schreiber J., Guenat C., Mason R.P.: J. Biol. Chem.261, 15915–15922 (1986); Davies M.J., Forni L.G., Shuter S.L.: Chem.-Biol. Interact.61, 177–188 (1987)

    Article  Google Scholar 

  15. Harman L.S., Mottley C., Mason R.P.: J. Biol. Chem.259, 5606–5611 (1989)

    Google Scholar 

  16. Harman L.S., Carver D.K., Schreiber J., Mason R.P.: J. Biol. Chem.261, 1642–1648 (1986)

    Google Scholar 

  17. Eling T.E., Curtis J.F., Harman L.S., Mason R.P.: J. Biol. Chem.261, 5023–5028 (1986)

    Google Scholar 

  18. Mottley C., Toy K., Mason R.P.: Mol. Pharm.31, 417–421 (1987)

    Google Scholar 

  19. Mottley C., Mason R.P. in: Biological Magnetic Resonance (Berliner, L.J., Reuben J., eds.), vol. 8, p. 528, 1989.

  20. This spectrum of this species appears, in isolation, at the end of each of the EPR time-series shown in Figs. 1–3; it is most clearly visible in Fig. 2, because of the contrary orientation of the time axis.

  21. In experiments carried out in2H2O, the splitting pattern in the analogous spectrum (not depicted) is a triplet-of-triplets with splittings constants of approximately 15 G for the nitrogen and 2 G for the (solvent-derived) α-hydrogen.

  22. Rehorek D., Janzen E.G.: Polyhedron3, 631–634 (1984)

    Article  Google Scholar 

  23. This effect is also evident in the analogous spectrum shown in Reference [13].

    Article  Google Scholar 

  24. Stone T.J., Buckman T., Nordio P.L., McConnell H.M.: Proc. Natl. Acad. Sci.54, 1010–1014 (1965)

    Article  ADS  Google Scholar 

  25. Li A.S.W., Cummings K.B., Roethling H.P., Buettner G.R., Chingell C.F.: J. Magn. Res.79, 140–142 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullins, M.E., Stamler, J.S., Osborne, J.A. et al. EPR spectroscopic characterization of biological thiyl radicals as PBN spin-trap adducts. Appl. Magn. Reson. 3, 1021–1032 (1992). https://doi.org/10.1007/BF03166170

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166170

Keywords

Navigation