Skip to main content
Log in

Carbon-based standards for electron paramagnetic resonance spectroscopy

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In order to meet the need for a good new EPR intensity andg-value standard whose paramagnetic species are carbon-based radicals, several materials were investigated, including coal, fusinite (a coal maceral), and several carbohydrate chars. Of the prototypical standards prepared, a chemically-treated fusinite is recommended as most suitable because of its chemical stability, spin density, EPR signal line shape and line width, microwave power saturation characteristics, availability, and homogeneity. Effects of dilution with KBr, KCl, and polymer are negligible, although the line width is broadened in the presence of paramagnetic gases. Several model standard compounds have been prepared in a polymer matrix to minimize changes in packing density over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Magej A., Dyrek K., Mattusch J.: Fresenius J. Anal. Chem.341, 707 (1991)

    Article  Google Scholar 

  2. Nagy V. Yu., Plaček J.: Fresenius J. Anal. Chem.343, 863 (1992)

    Article  Google Scholar 

  3. Clarkson R.B., Wang W., Brown D.R., Crookham H.C., Belford R.L. in: Magnetic Resonance of Carbonaceous Solids (Botto R., Sanada Y., eds.), Advances in Chemistry Series229, pp. 507–528. Washington DC: American Chemical Society 1993

    Google Scholar 

  4. Neavel R.C. in: Coal Structure (Gorbaty M.L., Ouchi K., eds.), Advances in Chemistry Series192, pp. 1–13. Washington DC: American Chemical Society 1981.

    Google Scholar 

  5. Clarkson R.B., Wang W., Brown D.R., Crookham, R.L., Belford R.L.: Fuel69, 1405 (1990)

    Article  Google Scholar 

  6. De Ruiter E.: Fuel41, 63 (1962)

    Google Scholar 

  7. Gerstein B.C., Murphy Dubois P., Ryan L.M. in: Coal Structure (Meyers R.A., ed.), pp. 87–129. NY: Academic Press 1982.

    Google Scholar 

  8. Retcofsky H.L., Stark J.M., Friedel R.A.: Anal. Chem.40, 1699 (1968)

    Article  Google Scholar 

  9. Petrakis L., Grandy D.W.: Anal. Chem.50, 303 (1978)

    Article  Google Scholar 

  10. Fitter E., Mueller K., Schaefer W. in: Chemistry and Physics of Carbon (Walker P.L., Jr., ed.), vol.7, p.237. New York: Marcel Dekker 1971.

    Google Scholar 

  11. Lewis I.C., Singer L.S. in: Chemistry and Physics of Carbon (Thrower P.A., Walker P.L., Jr., eds.), vol.17, p.1. New York: Marcel Dekker 1981.

    Google Scholar 

  12. Bansal R.C., Donnet J.B., Stoeckli F.: Active Carbon. New York: Marcel Dekker 1988.

    Google Scholar 

  13. Marsh H., Walker P.: Fuel Proc. Tech.2, 61 (1979)

    Article  Google Scholar 

  14. Grishina A.D., Semenov A.P.: Elektrokhimiya9, 719 (1973)

    Google Scholar 

  15. Boyer S.J., Clarkson R.B.: Colloids and Surfaces, A, (1993) in press.

  16. Pastor R.C., Hoskins R.B.: J. Chem. Phys.32, 264 (1960)

    Article  ADS  Google Scholar 

  17. Armstrong J.W., Jackson C., Marsh H.: Carbon2, 239 (1964)

    Article  Google Scholar 

  18. Ingram D.J.E.: Proceedings of the 3rd Biennial Carbon Conference, p.93, New York: Pergamon Press 1957.

    Google Scholar 

  19. Singer L.S.: Proceedings of the 5th Carbon Conference, p.37. New York: Pergamon Press 1961.

    Google Scholar 

  20. Smisek M., Cerny S.: Active Carbon: Manufacture, Properties and Applications. Amsterdam: Elsevier 1970.

    Google Scholar 

  21. Barrett E.P., Joyner L.G., Halenda P.P.: J. Am. Chem. Soc.73, 373 (1951)

    Article  Google Scholar 

  22. Mensing G., Beyerlein A.L., McDowell H.K.: J. Chem. Phys.99, 487 (1993)

    Article  ADS  Google Scholar 

  23. Poole C.P., Jr.: Electron Spin Resonance. A Comprehensive Treatise on Experimental Techniques, pp.459–489. New York: John Wiley and Sons 1983.

    Google Scholar 

  24. Tang W.K., Neil W.: J. Polym. Sci.6, 65 (1964)

    Google Scholar 

  25. Retcofsky H.L., Hough M.R., Maguire M., Clarkson R.B.R.L. in: Coal Structure (Gorbaty M.L., Ouchi K., eds.), Advances in Chemistry Series192, pp.49–50. Washington DC: American Chemical Society 1981.

    Google Scholar 

  26. Smirnova T.I., Smirnov A.I., Clarkson R.B., Belford R.L.: J. Phys. Chem., (1993) submitted.

  27. Bensebaa F., Andre J.J.: J. Phys. Chem.96, 5739 (1992)

    Article  Google Scholar 

  28. Swartz H.M., Boyer S., Gast P., Glockner J.F., Hu H., Liu K.J., Moussavi M., Norby S.-W., Vahidi N., Walczak T., Wu M., Clarkson R.B.: Magn. Reson. Med.20, 333 (1991)

    Article  Google Scholar 

  29. Vahidi N.: Ph.D. Thesis, Department of Biophysics, University of Illinois, Urbana, IL, 1993.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auteri, F.P., Belford, R.L., Boyer, S. et al. Carbon-based standards for electron paramagnetic resonance spectroscopy. Appl. Magn. Reson. 6, 287–308 (1994). https://doi.org/10.1007/BF03162495

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162495

Keywords

Navigation