Skip to main content
Log in

Strain-dependent recovery of open-field behavior and striatal dopamine deficiency in the mouse MPTP model of Parkinson’s disease

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The neurotoxin MPTP can damage dopamine systems in the brains of rodents, cats, or monkeys, and is therefore widely used to model degenerative processes that underlie human Parkinson’s disease. Here, we investigated the relationships between behavioral and neurochemical effects of systemic MPTP treatment in C57BL/6 and Balb/c mice. Initially, different doses of MPTP were used to determine which of them might be useful to establish severe striatal dopamine depletions. These data showed that four injections of 20mg/kg at two hour intervals were more efficient than 10 or 15 mg/kg per injection. However, this dose was not usable due to its severe lethality in females. In contrast, 4 X 15 mg/kg had a low risk of lethality and led to substantial dopamine depletions, which were more severe in the neostriatum than the ventral striatum, and more severe in C57 than in Balb mice. In the first open field test, which was performed two hours after the last injection, this treatment led to severe behavioral inactivation in all parameters taken (distance and speed of locomotion, peripheral activity, frequency and duration of rearing). This effect was seen in both strains and gender. Thereafter, recovery differed between strains, since Balb mice, which had sustained the smaller lesions, had completely recovered on the subsequent day, whereas similar recovery took longer in C57 mice. On the fourth day, all groups appeared largely normal; however, the measure of rearing behavior still showed a deficit in C57 mice. This deficit on day 4 was correlated with neostriatal dopamine depletion; that is, the larger the lesion, the less the number and duration of rearings. Interestingly, these relationships were also observed with respect to ventral striatal dopamine damage, which was correlated with the rearing deficit not only on day 4, but also on day 1. These data will be discussed with respect to mechanisms of toxicity, functional recovery, and the function of striatal dopamine systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradbury, A.J., Costall, B., Jenner, P.G., Kelly, M.E., Marsden, CD. and Naylor, R.J. (1986) The effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on striatal and limbic catecholamine neurones in white and black mice. Antagonism by monoamine oxidase inhibitors.Neuropharmacology 25, 897–904.

    Article  PubMed  CAS  Google Scholar 

  • Chia, L.-G., Ni, D.-R., Cheng, L.-J., Kuo, J.-S., Cheng, F.-C. and Dryhurst, G. (1996) Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 5,7-dihydroxytryptamine on the locomotor activity and striatal amines in C57B1/6 mice.Neurosci. Lett. 218, 67–71.

    Article  PubMed  CAS  Google Scholar 

  • Colotla, V.A., Flores, E., Oscos, A., Meneses, A. and Tapia, R. (1990) Effects of MPTP on locomotor activity in mice.Neurotoxicol. Teratol. 12, 405–407.

    Article  PubMed  CAS  Google Scholar 

  • Donnan, G.A., Willis, G.L., Kaczmarczyk, S.J. and Rowe, P. (1987) Motor function in the 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-treated mouse.J. Neurol. Sci. 77, 185–191.

    Article  PubMed  CAS  Google Scholar 

  • Elsworth, J.D., Deutch, A.Y., Redmond Jr., D.E., Taylor, J.R., Sladek Jr., J.R. and Roth, R.H. (1989) Symptomatic and asymptomatic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-dine-treated primates: biochemical changes in striatal regions.Neuroscience 33, 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Fazzini, E., Durso, R., Davoudi, H., Szabo, G.K. and Albert, M.L. (1990) GM1 gangliosides alter acute MPTP-induced behavioral and neurochemical toxicity in mice.J. Neurol. Sci. 99, 59–68.

    Article  PubMed  CAS  Google Scholar 

  • Fornaguera-Trias, J. and Schwarting, R.K.W. (1999) Early behavioral changes after nigro-striatal system damage can serve as predictors of striatal dopamine depletion.Prog. Neuropsychopharmacol. Biol. Psychiat. (in press).

  • Fornaguera, J., Schwarting, R.K.W., Boix, F. and Huston, J.P. (1993) Behavioral indices of moderate nigro-striatal 6-hydroxydopamine lesion: a preclinical Parkinson’s model.Synapse 13, 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Fornaguera, J., Carey, R.J., Huston, J.P. and Schwarting, R.K.W. (1994) Behavioral asymmetries and recovery in rats with different degrees of unilateral striatal dopamine depletion. Brain Res.664, 178–188.

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson, A. and Archer, T. (1994) MPTP-induced behavioural and biochemical deficits: a parametric analysis.J. Neural Transm. Park. Dis. Dement. Sect. 7, 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson, A., Plaznik, A., Sundstrom, E., Jonsson, G. and Archer, T. (1990) MPTP-induced hypoactivity in mice: reversal by L-DOPA.Pharmacol. Toxicol. 67, 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Gerlach, M. and Riederer, P. (1996) Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man.J. Neural Transm. 103, 987–1041.

    Article  PubMed  CAS  Google Scholar 

  • German, D.C., Nelson, E.L., Liang, C.L., Speciale, S.G., Sinton, CM. and Sonsalla, P.K. (1996) The neurotoxin MPTP causes degeneration of specific nucleus A8, A9 and A10 dopaminergic neurons in the mouse.Neurodegeneration 5, 299–312.

    Article  PubMed  CAS  Google Scholar 

  • Giovanni, A., Sieber, B.A., Heikkila, R.E. and Sonsalla, P.K. (1991) Correlation between the neostriatal content of the 1-methyl-4-phenylpyridinium species and dopaminergic neurotoxicity following 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine administration to several strains of mice.J. Pharmacol. Exp. Ther. 257, 691–697.

    PubMed  CAS  Google Scholar 

  • Hoskins, J.A. and Davis, L.J. (1989) The acute effect on levels of catecholamines and metabolites in brain, of a single dose of MPTP in 8 strains of mice.Neuropharmacology 28, 1389–1397.

    Article  PubMed  CAS  Google Scholar 

  • Hu, S.C, Chang, F.W., Sung, Y.J., Hsu, W.M. and Lee, E.H.Y. (1991) Neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine in the substantia nigra and the locus coeruleus in BALB/c mice.J. Pharmacol. Exp. Ther. 259, 1379–1387.

    PubMed  CAS  Google Scholar 

  • Hung, H.C. and Lee, E.H. (1996) The mesolimbic dopaminergic pathway is more resistant than the nigrostriatal dopaminergic pathway to MPTP and MPP+ toxicity: role of BDNF gene expression.Brain Res. Mol. Brain Res. 41, 14–26.

    Article  PubMed  CAS  Google Scholar 

  • Hung, H.C. and Lee, E.H. (1998) MPTP produces differential oxidative stress and antioxidative responses in the nigrostriatal and mesolimbic dopaminergic pathways.Free Radic. Biol. Med. 24, 76–84.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, R. and Becker, J. (1997) Intranigral grafts of fetal ventral mesencephalon tissue in adult 6-hydroxydopamine-lesioned rats can induce behavioral recovery.Cell Transplantation 6, 267–276.

    Article  PubMed  CAS  Google Scholar 

  • Klivenyi, P., St. Clair, D., Wermer, M., Yen, H.-C., Oberley, T., Yang, L. and Beal, M.F. (1998) Manganese superoxide dis-mutase overexpression attenuates MPTP toxicity.Neurobiol. Dis. 5, 253–258.

    Article  PubMed  CAS  Google Scholar 

  • Kupsch, M.F., Sautter, J., Schwarz, J., Riederer, P., Gerlach, M. and Oertel, W.H. (1996) 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine-induced neurotoxicity in non-human primates is antagonized by pretreatment with nimodipine at the nigral, but not at the striatal level.Brain Res. 741, 185–196.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E.H. and Lu, K.T. (1995) Neurotoxicity of MPTP and uptake of MPPT into dopamine and norepinephrine neurons in mice.Adv. Exp. Med. Biol. 363, 29–46.

    PubMed  CAS  Google Scholar 

  • Melega, W.P., Raleigh, M.J., Stout, D.B., DeSalles, A.A., Cherry, S.R., Blurton Jones, M., Morton, G.G., Huang, S.C. and Phelps, M.E. (1996) Longitudinal behavioral and 6-[18F]fluoro-L-DOPA-PETassessmentinMPTP-hemiparkin-sonian monkeys.Exp. Neurol. 141, 318–329.

    Article  PubMed  CAS  Google Scholar 

  • Miklyaeva, E.I. and Whishaw, I.Q. (1996) Hemiparkinson analogue rats display active support in good limbs versus passive support in bad limbs on a skilled reaching task of variable height.Behav. Neurosci. 110, 117–125.

    Article  PubMed  CAS  Google Scholar 

  • Mitra, N., Mohanakumar, K.P. and Ganguly, D.K. (1992) Dissociation of serotonergic and dopaminergic components in acute effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyr-idine in mice.Brain Res. Bull. 28, 355–364.

    Article  PubMed  CAS  Google Scholar 

  • Muthane, U., Ramsay, K.A., Jiang, H., Jackson-Lewis, V., Donaldson, D., Fernando, S., Ferreira, M. and Przedborski, S. (1994) Differences in nigral neuron number and sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57/b1 and CD-1 mice.Exp. Neurol.,126, 195–204.

    Article  PubMed  CAS  Google Scholar 

  • Ng, M.C., Iacopino, A.M., Quintero, E.M., Marches, E, Sonsalla, P.K., Liang, C.L., Speciale, S.G. and German, D.C. (1996) The neurotoxin MPTP increases calbindin-D28k levels in mouse midbrain dopaminergic neurons.Brain Res. Mol. Brain Res. 36, 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Nishi, K., Kondo, T. and Narabayashi, H. (1991) Destruction of norepinephrine terminals in 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP)-treated mice reduces locomotor activity induced by L-DOPA.Neurosci. Lett. 123, 244–247.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, N., Hirose, Y., Ohara, S., Ono, T. and Watanabe, Y. (1985) A simple quantitative bradykinesia test in MPTP-treated mice.Res. Commun. Chem. Pathol. Pharmacol. 50, 435–441.

    PubMed  CAS  Google Scholar 

  • Przedborski, S. and Jackson-Lewis, V. (1998) Mechanisms of MPTP toxicity.Mov. Disord. 13(Suppl. 1), 35–38.

    PubMed  Google Scholar 

  • Rothblat, D.S. and Schneider, J.S. (1999) Regional differences in striatal dopamine uptake and release associated with recovery from MPTP-induced Parkinsonism: an in vivo electrochemical study.J. Neurochem. 72, 724–733.

    Article  PubMed  CAS  Google Scholar 

  • Rozas, G., Lopez-Martin, E., Guerra, M.J. and Labandeira-Garcia, J.L. (1998) The overall rod performance test in the MPTP-treated mouse model of Parkinsonism.J. Neurosci. Meth. 83, 165–175.

    Article  CAS  Google Scholar 

  • Salamone, J.D. (1994) The involvement of nucleus accumbens dopamine in appetitive and aversive motivation.Behav. Brain Res. 61, 117–133.

    Article  PubMed  CAS  Google Scholar 

  • Sanghera, M.K., Manaye, K.E, Liang, C.L., Iacopino, A.M., Bannon, M.J. and German, D.C. (1994) Low dopamine transporter mRNA levels in midbrain regions containing calbindin.Neuroreport 5, 1641–1644.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, J.S. and Rothblat, D.S. (1991) Neurochemical evaluation of the striatum in symptomatic and recovered MPTP-treated cats.Neuroscience 44, 421–429.

    Article  PubMed  CAS  Google Scholar 

  • Schwarting, R.K.W. and Carey, R.J. (1988) Differential behavioural effects after subtotal depletions of dopamine or noradrenaline in the ventral striatum.Fund. Neurol. 3, 29–36.

    CAS  Google Scholar 

  • Schwarting, R. and Huston, J.P. (1987) Short-term effects of ether, equithesin and droperidol/fentanyl on catecholamine and indolamine metabolism in the brain of the rat.Neuropharmacology 26, 457–461.

    Article  PubMed  CAS  Google Scholar 

  • Schwarting, R.K. and Huston, J.P. (1996a) The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments.Prog. Neurobiol. 50, 275–331.

    Article  PubMed  CAS  Google Scholar 

  • Schwarting, R.K. and Huston, J.P. (1996b) Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae.Prog. Neurobiol. 49, 215–266.

    Article  PubMed  CAS  Google Scholar 

  • Sershen, H., Hashim, A. and Lajtha, A. (1987) Behavioral and biochemical effects of nicotine in an MPTP-induced mouse model of Parkinson’s disease.Pharmacol. Biochem. Behav. 28, 299–303.

    Article  PubMed  CAS  Google Scholar 

  • Sonsalla, P.K. and Heikkila, R.E. (1986) The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice.Eur. J. Pharmacol. 129, 339–345.

    Article  PubMed  CAS  Google Scholar 

  • Sundstrom, E., Stromberg, I., Tsutsumi, T, Olson, L. and Jonsson, G. (1987) Studies on the effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on central catecholamine neurons in C57BL/6 mice. Comparison with three other strains of mice.Brain Res. 405, 26–38.

    Article  PubMed  CAS  Google Scholar 

  • Sundstrom, S., Frederiksson, A. and Archer, T. (1990) Chronic neurochemical and behavioral changes in MPTP-lesioned C57BL/6 mice: a model for Parkinson’s disease.Brain Res. 528, 181–188.

    Article  PubMed  CAS  Google Scholar 

  • Tadano, T, Satoh, N., Sakuma, I., Matsumura, T, Kisara, K., Arai, Y. and Kinemuchi, H. (1987) Behavioral and biochemical changes following acute administration of MPTP and MPP+.Life Sci. 40, 1309–1318.

    Article  PubMed  CAS  Google Scholar 

  • Unzeta, M., Baron, S., Perez, V., Ambrosio, S. and Mahy, N. (1994) Sex-related effects of 1-methyl-4-phenyl-1,2,3,6-tetra-hydro-pyridine treatment may be related to differences in monoamine oxidase B.Neurosci. Lett. 176, 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Weihmuller, F.B., Hadjiconstantinou, M. and Bruno, J.P. (1988) Acute stress or neuroleptics elicit sensorimotor deficits in MPTP-treated mice.Neurosci. Lett. 85, 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Weihmuller, F.B., Hadjiconstantinou, M. and Bruno, J.P. (1990) Dopamine receptors and sensorimotor behavior in MPTP-treated mice.Behav. Brain Res. 38, 263–273.

    Article  PubMed  CAS  Google Scholar 

  • Willis, G.L. and Donnan, G.A. (1987) Histochemical, biochemical and behavioural consequences of MPTP treatment in C-57 black mice.Brain Res. 402, 269–274.

    Article  PubMed  CAS  Google Scholar 

  • Yurek, D.M., Deutch, A.Y., Roth, R.H. and Sladek Jr., J.R. (1989) Morphological, neurochemical, and behavioral characterizations associated with the combined treatment of diethyldithiocarbamate and 1-methyl-4-pheny 1-1,2,3,6-tetrahydropyridine in mice.Brain Res. 497, 250–259.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond, M.J., Abercrombie, E.D., Berger, T.W., Grace, A.A. and Strieker, E.M. (1990) Compensation after lesions of central dopaminergic neurons: some clinical and basic implications.Trends Neurosci. 13, 290–296.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarting, R.K.W., Sedelis, M., Hofele, K. et al. Strain-dependent recovery of open-field behavior and striatal dopamine deficiency in the mouse MPTP model of Parkinson’s disease. neurotox res 1, 41–56 (1999). https://doi.org/10.1007/BF03033338

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033338

Keywords

Navigation