Skip to main content
Log in

Characteristics of propagating tribrachial flames in counterflow

  • Published:
KSME International Journal Aims and scope Submit manuscript

Abstract

The effect of fuel concentration gradient on the propagation characteristics of tribrachial (or triple) flames has been investigated experimentally in both two-dimensional and axisymmetric counterflows. The gradient at the stoichiometric location was controlled by the equivalence ratios at the two nozzles; one of which is maintained rich, while the other lean. Results show that the displacement speed of tribrachial flames in the two-dimensional counterflow decreases with fuel concentration gradient and has much larger speed than the maximum speed predicted previously in two-dimensional mixing layers. From an analogy with premixed flame propagation, this excessively large displacement speed can be attributed to the flame propagation with respect to burnt gas. Corresponding maximum speed in the limit of small mixture fraction gradient was estimated and the curvefit of the experimental data substantiates this limiting speed. As mixture fraction gradient approaches zero, a transition occurs, such that the propagation speed of tribrachial flame approaches stoichiometric laminar burning velocity with respect to burnt gas. Similar results have been obtained for tribrachial flames propagating in axisymmetric counterflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a,b, c :

Constants

t :

Time after laser shot [ms]

V o :

Nozzle exit velocity

S d :

Flame displacement speed

S o L st :

Stoichiomtric laminar burning velocity

S tri :

Propagation speed of tribrachial flame

Y f :

Mass fraction of methane

z :

Axial coordinate

φ R :

Equivalence ratio of rich condition

φ L :

Equivalence ratio of lean condition

ρp :

Density

*:

Maximum

b :

Burnt

F :

Fuel

st :

Stoichiometry

u :

Unburned

References

  • Buckmaster, J. and Matalon, M., 1988, “Anomalous Lewis Number Effects in Tribrachial Flames,”Proc. Combust. Inst., Vol. 22, pp. 1527- 1535.

    Google Scholar 

  • Cha, M.S. and Chung, S. H., 1996, “Characteristics of Lifted Flames in Nonpremixed Turbulent Confined Jets,”Proc. Combust. Inst., Vol. 26, pp. 121–128.

    Google Scholar 

  • Chung, S. H. and Lee, B. J., 1991, “On the Characteristics of Laminar Lifted Flames in a Nonpremixed Jet,”Combust. Flame, Vol. 86, pp. 62–72.

    Article  Google Scholar 

  • Daou, J. and Linan, A., 1998, “The Role of Unequal Diffusivities in Ignition and Extinction Fronts in Strained Mixing Layers,”Combust. Theory Modelling, Vol. 2, pp. 449–477.

    Article  MATH  Google Scholar 

  • Dold, J. W., 1989, “Flame Propagation in a Nonuniform Mixture: Analysis of a Slowly Varying Triple Flame,”Combust. Flame. Vol. 76, pp. 71–88.

    Article  Google Scholar 

  • Domingo, P. and Vervisch, L., 1996, “Triple Flames and Partially premixed Combustion in Autoignition of Non-premixed Turbulent Mixtures,”Proc. Combust. Inst., Vol. 26, pp.233- 240.

    Google Scholar 

  • Echekki, T., Chen, J. H., 1998, “Structure and Propagation of Methanol-Air Triple Flames,”Combust. Flame, Vo. 114, pp. 231–245.

    Article  Google Scholar 

  • Ghosal, S. and Vervisch, L., 2000, “Theoretical and Numerical Study of a Symmetrical Triple Flame using the Parabolic Flame Path Approximation,”J. Fluid Mech., Vol. 415, pp. 227–260.

    Article  MATH  MathSciNet  Google Scholar 

  • Im, H. G. and Chen. J. H., 1999, “Structure and Propagation of Triple Flames in Partially Premixed Hydrogen-air Mixtures,”Combust. Flame, Vol. 119, pp. 436–454.

    Article  Google Scholar 

  • Kioni, P. N., Rogg, B., Bray, K. N. C. and Linan, A., 1993, “Flame Spread in Laminar Mixing Layers: The Triple Flame,”Combust. Flame, Vol. 95, pp. 276–290.

    Article  Google Scholar 

  • Kioni, P. N., Bray, K. N. C., Greenhalgh, D. A., Rogg, B., 1999, “Experimental and Numerical Studies of a Triple Flame,”Combust. Flame, Vol. 116, pp. 192–206.

    Article  Google Scholar 

  • Ko, Y. S. and Chung, S. H., 1999, “Propagation of Unsteady Tribrachial Flames in Laminar Non-premixed Jets,”Combust. Flame, Vol. 118, pp. 151–163.

    Article  Google Scholar 

  • Law, C. K., 1993, inReduced Kinetic Mechanism for Application in Combustion Systems (N. Peters and B. Rogg, Eds.), Lecture Notes, in Physics Series m 15, Springer-Verlag, Berlin, pp. 15–26.

    Chapter  Google Scholar 

  • Lee, B. J., Kim, J. S. and Chung, S. H., 1994, “Effect of Dilution of the Liftoff of Nonpremixed Jet Flames,”Proc. Combust. Inst., Vol. 25, pp. 1175–1181.

    Google Scholar 

  • Lee, B. J., Cha, M. S. and Chung, S. H., 1997, “Characteristics of Laminar Lifted Flames in a Partially Premixed Jets,”Combust. Sci. Technol., Vol. 127, pp. 55–70.

    Article  Google Scholar 

  • Lee, B. J. and Chung, S. H., 1997, “Stabilization of Lifted Tribrachial Flames in a Laminar Nonpremixed Jet,”Combust. Flame, Vol. 109, pp. 163–172.

    Article  Google Scholar 

  • Lee S. D. and Chung S. H., 1994, “On the Structure and Extinction of Interacting Lean Methane Air Premixed Flames,”Combust. Flame, Vol. 98, pp. 80–92.

    Article  Google Scholar 

  • Lockett, R. D., Boulanger, B., Harding, S. C. and Greenhalgh, D. A., 1999, “The Structure and Stability of the Laminar Counter-How Partially Premixed Methane/Air Triple Flame,”Combust. Flame. Vol. 119, pp. 109–120.

    Article  Google Scholar 

  • Mielenz, O., Schlottmann, F. and Rogg, B., 1999, “Experimental Investigations of Laminar Triple Flames and Triplet Flames in Strained Flow Fields,”Seventeenth ICDERS, Paper no. 215.

  • Phillips, H., 1965, “Flame in a Buoyant Methane Layer,”Proc. Combust. Inst., Vol. 10, pp. 1277–1283.

    Google Scholar 

  • Plessing, T., Terhoeven, P., Peters, N. and Mansour, M. S., 1998, “An Experimental and Numerical Study of a Laminar Triple Flame,”Combust. Flame, Vol. 115, pp. 335–353.

    Article  Google Scholar 

  • Ruetsch, G. R., Vervisch, L. and Linan, A., 1995, “Effects of Heat Release on Triple Flames,”Phys. Fluids, Vol. 7, pp. 1447–1454.

    Article  Google Scholar 

  • Smooke, M. D., 1982, “Solution of Burner-Stabilized Premixed Laminar Flame by Boundary Value Methods,”J. Computat. Phys., Vol. 48, pp. 72–105.

    Article  MATH  Google Scholar 

  • Veynante, D., Vervisch, L., Poinsot, T., Linan, A. and Ruetsch, G., 1994, “Triple Flame Structure and Diffusion Flame Stabilization,”Proceedings of the Summer Program, Center for Turbulence Research, pp. 55–73.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Ho Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, Y.S., Chung, T.M. & Chung, S.H. Characteristics of propagating tribrachial flames in counterflow. KSME International Journal 16, 1710–1718 (2002). https://doi.org/10.1007/BF03021673

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03021673

Key Words

Navigation