Skip to main content
Log in

Preparation of immobilized sepharose-micrococcal nuclease derivatives: activity and stability

  • Published:
Journal of Solid-Phase Biochemistry Aims and scope Submit manuscript

Abstract

Micrococcal nuclease has been covalently attached to CNBr-activated Sepharose 4B by coupling through three different enzyme functions: (a) amino groups; (b) carboxyl groups; and (c) tyrosyl or histidyl residues. On the basis of coupling yield and catalytic efficiency, Sepharose-(NH2) nuclease derivatives were chosen for further activity andstability studies. The activity of the insoluble enzyme has been evaluated with macromolecular (DNA) and small (synthetic nucleotide) substrates; with the latter the enzyme retains 70% of native enzyme activity. Good enhancement of enzyme stability in the 4–40°C range has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weetall, H. H. (1975) Applications of immobilized enzymes.In Immobilized Enzymes for Industrial Reactors,Messing, R. A. (ed.), Academic, New York, pp. 201–226.

    Google Scholar 

  2. Hjerten, S. (1964) Biochim. Biophys. Acta 79: 393.

    Article  CAS  Google Scholar 

  3. Porath, J., Axen, R., andErnback, S. (1967) Nature 215: 1491.

    Article  CAS  Google Scholar 

  4. Cuatrecasas, P., Wilchek, M., andAnfinsen, C. B. (1968) Proc. Natl. Acad. Sci. U.S.A. 61: 636.

    Article  CAS  Google Scholar 

  5. Cunningham, L., Catlin, B. W., andPrivat De Garilhe, M. (1956) J. Am. Chem. Soc. 78: 4642.

    Article  CAS  Google Scholar 

  6. Reddi, K. K. (1967) Micrococcal nuclease.In Methods in Enzymology, Vol. 12A,Grossman, L. andMoldave, K. (eds.), Academic, New York, pp. 257–262.

    Google Scholar 

  7. Cuatrecasas, P., Fuchs, S., andAnfinsen, C. B. (1967) J. Biol. Chem. 242:1541.

    CAS  Google Scholar 

  8. Cuatrecasas, P., Wilchek, M., andAnfinsen, C. B. (1969) Biochemistry 8: 2277.

    Article  CAS  Google Scholar 

  9. Anfinsen, C. B., Cuatrecasas, P., andTaniuchi, H. (1971) Staphylococcal nuclease, chemical properties and catalysis.In The Enzymes, ed3rd edn., Vol. IV,Boyer, P. D. (ed.), Academic, New York, pp. 177–204.

    Google Scholar 

  10. Naegeli, C. Tyabyi, A., andConrad, L. (1938) Helv. Chim. Acta 21:1127.

    Article  CAS  Google Scholar 

  11. Cuatrecasas, P. (1970) J. Biol. Chem. 245: 3059.

    CAS  Google Scholar 

  12. Kohn, J. andWilchek, M. (1978) Biochem. Biophys. Res. Comm. 84: 7.

    Article  CAS  Google Scholar 

  13. Cuatrecasas, P., Fuchs, S., andAnfinsen, C. B. (1968) J. Biol. Chem. 243: 4787.

    CAS  Google Scholar 

  14. Guisan, J. M., andBallesteros, A. (1978) Staphylococcal nuclease immobilized on agarose gel.In Enzyme Engineering, Vol. 4,Broun, G. B., Manecke, G., andWingard, L. B., Jr. (eds.), Plenum, New York, pp. 117–122.

    Google Scholar 

  15. Melrose, G.J. H. (1971) Rev. Pure Appl. Chem. 21: 83.

    CAS  Google Scholar 

  16. Mosbach, K. (1976) Introduction.In Methods in Enzymology, Vol. 44,Mosbach, K. (ed.), Academic, New York, pp. 3–7.

    Google Scholar 

  17. Goldman, R., Goldstein, L., andKatchalski, E. (1971) Water-insoluble enzyme derivatives and artificial enzyme membranes.In Biochemical Aspect of Reactions on Solid Supports,Stark, G. R. (ed.), Academic, New York, pp. 1–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guisan, J.M., Ballesteros, A. Preparation of immobilized sepharose-micrococcal nuclease derivatives: activity and stability. Journal of Solid-Phase Biochemistry 4, 245–252 (1979). https://doi.org/10.1007/BF02998678

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02998678

Keywords

Navigation