Skip to main content
Log in

Numerical Calculation of Minimum Ignition Energy for Hydrogen and Methane Fuels

  • Published:
KSME International Journal Aims and scope Submit manuscript

Abstract

Minimum ignition energies of hydrogen/air and methane/air mixtures have been investigated numerically by solving unsteady one-dimensional conservation equations with detailed chemical kinetic mechanisms. Initial kernel size needed for numerical calculation is a sensitive function of initial pressure of a mixture and should be estimated properly to obtain quantitative agreement with experimental results. A simple macroscopic model to determine minimum ignition energy has been proposed, where the initial kernel size is correlated with the quenching distance of a mixture and evaluated from the quenching distance determined from experiment. The simulation predicts minimum ignition energies of two sample mixtures successfully which are in a good agreement with the experimental data for the ranges of pressure and equivalence ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ai :

Pre-exponential factor ini-th reaction step

a:

Constant

bi :

Temperature exponent ini-th reaction step

Cp :

Constant-pressure specific heat

Dj :

Diffusion coefficient of speciesj

Ds :

Energy source density

dq :

Quenching distance

Eig :

Ignition energy

Ei :

Activation energy ini-th reaction step

h:

Specific enthalpy of mixture

hj :

Specific enthalpy of speciesj

ki :

Reaction rate constant ini-th reaction step

n:

Exponent in Eq. (9)

\(\bar M\) :

Mean molecular weight

Mj :

Molecular weight of speciesj

ns :

Number of species

p:

Pressure

\(\dot q\) :

Energy source

\(\bar R\) :

Universal gas constant

R0 :

Domain size

r:

Spatial coordinate

rs :

Radius of energy source (=initial kernel size)

SL :

Burning velocity

T:

Temperature

t:

Time

u:

Velocity

Vc :

Correction factor for diffusion velocity

Vo :

Mixture volume to be heated by supplied ignition energy

Vj :

Diffusion velocity of speciesj

X:

Mole fraction

Y:

Mass fraction

α:

Geometric factor

δ:

Flame thickness

Θj :

Thermal diffusion ratio of speciesj

μ:

Viscosity of mixture

λ:

Conductivity of mixture

φ:

Equivalence ratio

ϱ:

Density

τrr, τθθ :

Stresses defined in Eq. (6)

τ:

Duration of supplied energy

wj :

Net production rate of speciesj

o:

Initial state

min:

Minimum

References

  • Akram, M., 1996, “Two Dimensional Model for Spark Discharge Simulation in Air,”AIAA Journal, Vol. 34, pp. 1835–1845.

    Article  MATH  Google Scholar 

  • Akram, M. and Lundgren, E., 1996, “The Evolution of Spark Discharges in Gases: I. Macroscopic Models,”Journal of Physics D : Applied Physics, Vol. 29. pp. 2129–2136.

    Article  Google Scholar 

  • Au, S., Haley, R. and Smy, P. R., 1992, “The Influence of the Igniter-Induced Blast Wave Upon the Initial Volume and Expansion of the Flame Kernel,”Combustion and Flame, Vol. 88, pp. 50–60.

    Article  Google Scholar 

  • Calcote, H. F., Gregory, A. Jr., Barnett, C. M. and Gilmer, R. 1952, “Spark Ignition,”Industrial and Engineering Chemistry, Vol. 44. pp. 2656–2662.

    Article  Google Scholar 

  • Friedman, R., 1949, “The Quenching of Laminar Oxyhydrogen Flames by Solid Surfaces,”Proceedings of the Combustion Institute, Vol. 3, pp. 110–120.

    Google Scholar 

  • Gaydon, A. G. and Wolfhard, H. G., 1979,Flames, Their Structure, Radiation, and Temperature, 4th Ed., John Wiley & Sons, New York, p. 25.

    Google Scholar 

  • Kailasanath, K., Oran, E. and Boris, J., 1982, “A Theoretical Study of the Ignition of Premixed Gases,”Combustion and Flame, Vol. 47, pp. 173–190.

    Article  Google Scholar 

  • Kee, R. J., Warnatz, J. and Miller, J. A., 1983,A Fortran Computer Code Package for the Evaluation of Gas-Phase Viscosities, Conductivities, and Diffusion Coefficients, Sandia National Laboratories Report No. SAND83-8209.

  • Kee, R. J., Rupley, F. M. and Miller, J. A., 1989.CHEMKIN-II : A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, Sandia National Laboratories Report No. SAND89-8009.

  • Kim, S.-K., Lee. J.K., Kim, Y.-M., Ahn, J. -H., 2002a, “Numerical Modeling of Combustion Processes and Pollutant Formations in Direct-Injection Diesel Engines,”KSME International Journal, Vol. 16, No. 7, pp. 1009–1018.

    Google Scholar 

  • Kim, H. Lim., Y., Min. K. and Lee, D., 2002b, “Investigation of Autoignition of Propane and n-Butane Blends Using a Rapid Compression Machine,”KSME International Journal, Vol. 16, No. 8, pp. 1127–1134.

    Google Scholar 

  • Lewis, B. and von Elbe, G., 1987,Combustion, Flames and Explosion of Gases, 3rd Ed., Academic Press, Orlando, p. 333.

    Google Scholar 

  • Maas, U. and Warnatz, J., 1988, “Ignition Processes in Hydrogen-Oxygen Mixtures,”Combustion and Flame, Vol. 74, pp. 53–69.

    Article  Google Scholar 

  • Moorhouse, J., Williams, A. and Maddison, A. E., 1974, “An Investigation of the Minimum Ignition Energies of Some C1 to C7 Hydrocarbons,”Combustion and Flame, Vol. 23, pp. 203–213.

    Article  Google Scholar 

  • Peters, N., 1991, “Flame Calculations with Reduced Mechanisms — An Outline,” inReduced Kinetic Mechanisms for Applications in Combustion Systems (?. Peters and Rogg Eds.), Vol. 15 of Lecture Notes in Physics, Springer-Verlag, pp. 3–14.

    Article  Google Scholar 

  • Rose, H. E. and Priede, T., 1958, ”Ignition Phenomena in Hydrogen-Air Mixtures,”Proceedings of the Combustion Institute, Vol. 7, pp. 436–445.

    Google Scholar 

  • Sher, E., Ben-Ya’ish, J. and Kravchik, T., 1992, “On the Birth of Spark Channels,”Combustion and Flame, Vol. 89, pp. 186–194.

    Article  Google Scholar 

  • Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, Jr. W. C., Lissianski, V. V. and Qin, Z., 2000, GRIMech Website http://www.me.berkeley.edu/gri_mech/.

  • Smooke, M. D., Miller, J. A. and Kee, R. J., 1983, “Determination of Adiabatic Flame Speeds by Boundary Value Methods,” Combustion Science and Technology, Vol. 34, pp. 79–90.

    Article  Google Scholar 

  • Sohn, H. and Chung, S. H., 1995, “A Numerical Study on Normal and Abnormal Combustion in Hydrogen Premixture,”Transactions of Korean Society of Mechanical Engineers, Vol. 19, pp. 1989–1998 (in Korean).

    Google Scholar 

  • Thiele, M., Warnatz, J., Dreizier, A., Lindenmaier, S., Schieszl, R., Maas, U., Grant, A. and Ewart, P., 2002, “Spark ignited Hydrogen/air Mixtures: Two Dimensional Detailed Modeling and Laser Based Diagnostics,”Combustion and flame, Vol. 128, pp. 74–87.

    Article  Google Scholar 

  • Williams, F. A., 1985, Combustion Theory, 2nd Ed., Addison-Wesley, Menlo Park, CA, p. 268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chae Hoon Sohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.J., Chung, S.H. & Sohn, C.H. Numerical Calculation of Minimum Ignition Energy for Hydrogen and Methane Fuels. KSME International Journal 18, 838–846 (2004). https://doi.org/10.1007/BF02990303

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02990303

Key Words

Navigation