Skip to main content
Log in

Tissue transglutaminase is not involved in the aggregate formation of stably expressed α-synuclein in sh-sy5y human neuroblastoma cells

  • Research Articles
  • Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Intraneuronal deposition containing α-synuclein is implicated in the pathogenesis of synucleinopathies including Parkinsons disease (PD). Although it has been demonstrated that cytoplasmic inclusions of wild type α-synuclein are observed in the brain of PD patients and that α-synuclein mutations such as A30P and A53T accelerate aggregate formation, the exact mechanism by which α-synuclein forms insoluble aggregates is still controversial. In the present study, to understand the possible involvement of tissue transglutaminase (tTG) in aggregate formation of a-synuclein, SH-SY5Y cell lines stably expressing wild type or mutant (A30P or A53T) a-synuclein were created and aggregate formation of α-synuclein was observed upon activation of tTG. The data demonstrated that a-synuclein negligibly interacted with tTG and that activation of tTG did not result in the aggregate formation of a-synuclein in SH-SY5Y cells overexpressing either wild type or mutant a-synuclein. In addition, a-synuclein was not modified by activated tTGin situ. These data suggest that tTG is unlikely to be a contributing factor to the formation of aggregates of α-synuclein in a stable cell model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andringa, G., Lam, K. Y., Chegary, M., Wang, X., Chase, T. N., and Bennett, M. C., Tissue transglutaminase catalyzes the formation of alpha-synuclein crosslinks in Parkinson’s disease.FASEB J., 18, 932–934 (2004).

    PubMed  CAS  Google Scholar 

  • Conway, K. A., Harper, J. D., and Lansbury, P. T., Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease.Nat. Med., 4, 1318–1320 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Williamson, R. E., and Lansbury, P. T., Jr. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy.Proc. Natl. Acad. Sci. U.S.A., 97, 571–576 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Davidson, W. S., Jonas, A., Clayton, D. F., and George, J. M., Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes.J. Biol. Chem., 273, 9443–9449 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Folk, J. E., Mechanism and basis for specificity of transglutaminase-catalyzed epsilon-(gamma-glutamyl) lysine bond formation.Adv. Enzymol. Relat. Areas Mol. Biol., 54, 1–56 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Galvin, J. E., Lee, V. M., and Trojanowski, J. Q., Synucleinopathies: clinical and pathological implications.Arch. Neurol., 58, 186–190 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Giasson, B. I., Uryu, K., Trojanowski, J. Q., and Lee, V. M., Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro.J. Biol. Chem., 21A, 7619–7622 (1999).

    Article  Google Scholar 

  • Green, H., Human genetic diseases due to codon reiteration: relationship to an evolutionary mechanism [letter].Cell, 74, 955–956 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, C. S., Birckbichler, P. J., and Rice, R. H., Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues.FASEBJ., 5, 3071–3077 (1991).

    CAS  Google Scholar 

  • Ho, G. J., Gregory, E. J., Smimova, I. V., Zoubine, M. N., and Festoff, B. W., Cross-linking of beta-amyloid protein precursor catalyzed by tissue transglutaminase.FEBS Lett., 349, 151–154 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Junn, E., Ronchetti, R. D., Quezado, M. M., Kim, S. Y., and Mouradian, M. M., Tissue transglutaminase-induced aggregation of alpha-synuclein: Implications for Lewy body formation in Parkinson’s disease and dementia with Lewy bodies.Proc. Natl Acad. Sci. U.S.A., 100, 2047–2052 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kanda, S., Bishop, J. F., Eglitis, M. A., Yang, Y., and Mouradian, M. M., Enhanced vulnerability to oxidative stress by alpha synuclein mutations and C-terminal truncation.Neuroscience 97, 279–284 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Karpuj, M. V., Garren, H., Slunt, H., Price, D. L., Gusella, J., Becher, M. W., and Steinman, L., Transglutaminase aggregates huntingtin into nonamyloidogenic polymers, and its enzymatic activity increases in Huntington’s disease brain nuclei.Proc. Natl. Acad. Sci. U.S.A., 96, 7388–7393 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Ko, L., Mehta, N. D., Farrer, M., Easson, C., Hussey, J., Yen, S., Hardy, J., and Yen, S. H., Sensitization of neuronal cells to oxidative stress with mutated human alpha-synuclein.J. Neurochem., 75, 2546–2554 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, S., Chi, E. Y., Wood, S. J., Kendrick, B. S., Li, C., Garzon-Rodriguez, W., Wypych, J., Randolph, T. W., Narhi, L. O., Biere, A. L., Citron, M., and Carpenter, J. F., Oxidative dimer formation is the critical rate-limiting step for Parkinson’s disease alpha-synuclein fibrillogenesis.Biochemistry, 42, 829–837 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J. T., Schols, L., and Riess, O., Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease.Nat. Genet., 18, 106–108 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Lai, T. S., Slaughter, T. F., Peoples, K. A., Hettasch, J. M., and Greenberg, C. S., Regulation of human tissue transglutaminase function by magnesium-nucleotide complexes. Identification of distinct binding sites for Mg-GTP and Mg-ATP.J. Biol. Chem., 273, 1776–1781 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Lesort, M., Chun, W., Johnson, G. V., and Ferrante, R. J., Tissue transglutaminase is increased in Huntington’s disease brain.J. Neurochem., 73, 2018–2027 (1999).

    PubMed  CAS  Google Scholar 

  • Lorand, L. and Conrad, S. M., Transglutaminases.Mol. Cell Biochem., 58, 9–35 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Lotharius, J. and Brundin, P., Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein.Nat. Rev. Neurosci., 3, 932–942 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Miller, C. C. and Anderton, B. H., Transglutaminase and the neuronal cytoskeleton in Alzheimer’s disease.J. Neurochem., 46, 1912–1922 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Miller, M. L. and Johnson, G. V., Transglutaminase cross-linking of the tau protein.J. Neurochem., 65, 1760–1770 (1995).

    PubMed  CAS  Google Scholar 

  • Narhi, L., Wood, S. J., Steavenson, S., Jiang, Y., Wu, G. M., Anafi, D., Kaufman, S. A., Martin, F., Sitney, K., Denis, P., Louis, J. C., Wypych, J., Biere, A. L., and Citron, M., Both familial Parkinson’s disease mutations accelerate alphasynuclein aggregation.J. Biol. Chem., 274, 9843–9846 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Olanow, C. W. and Tatton, W. G., Etiology and pathogenesis of Parkinson’s disease.Annu. Rev. Neurosci., 22, 123–144 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Ostrerova-Golts, N., Petrucelli, L., Hardy, J., Lee, J. M., Farer, M., and Wolozin, B., The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity.J. Neurosci., 20, 6048–6054 (2000).

    PubMed  CAS  Google Scholar 

  • Paik, S. R., Lee, J. H., Kim, D. H., Chang, C. S., and Kim, Y. S., Self-oligomerization of NACP, the precursor protein of the non-amyloid beta/A4 protein (A beta) component of Alzheimer’s disease amyloid, observed in the presence of a C-terminal A beta fragment (residues 25–35).FEBS Lett., 421, 73–76 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Paxinou, E., Chen, Q., Weisse, M., Giasson, B. I., Norris, E. H., Rueter, S. M., Trojanowski, J. Q., Lee, V. M., and Ischiropoulos, H., Induction of alpha-synuclein aggregation by intracellular nitrative insult.J. Neurosci., 21, 8053–8061 (2001).

    PubMed  CAS  Google Scholar 

  • Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Dilorio, G., Golbe, L. I., and Nussbaum, R. L., Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease.Science, 276, 2045–2047 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D. J., Abraham, C., and lhara, Y., Brain transglutaminase:in vitro crosslinking of human neurofilament proteins into insoluble polymers.Proc. Natl. Acad. Sci. U.S.A., 79, 6070–6074 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Sherer, T. B., Betarbet, R., Stout, A. K., Lund, S., Baptista, M., Panov, A. V., Cookson, M. R., and Greenamyre, J. T., Anin vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage.J. Neurosci., 22, 7006–7015 (2002).

    PubMed  CAS  Google Scholar 

  • Voiles, M. J. and Lansbury, P. T., Jr., Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease.Biochemistry, 42, 7871–7878 (2003).

    Article  CAS  Google Scholar 

  • Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A., and Lansbury, P. T., Jr., NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded.Biochemistry, 35, 13709–13715 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Wood, S. J., Wypych, J., Steavenson, S., Louis, J. C., Citron, M., and Biere, A. L., Alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease.J. Biol. Chem., 274, 19509–19512 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Xie, H., Litersky, J. M., Hartigan, J. A., Jope, R. S., and Johnson, G. V., The interrelationship between selective tau phosphorylation and microtubule association.Brain Res., 798, 173–183 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Guttmann, R. P., and Johnson, G. V., Tissue transglutaminase is anin situ substrate of calpain: regulation of activity.J. Neurochem., 71, 240–247 (1998a).

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Lesort, M., Guttmann, R. P., and Johnson, G. V., Modulation of thein situ activity of tissue transglutaminase by calcium and GTP.J. Biol. Chem., 273, 2288–2295 (1998b).

    Article  CAS  Google Scholar 

  • Zourlidou, A., Payne-Smith, M. D., and Latchman, D. S., Modulation of cell death by alpha-synuclein is stimulusdependent in mammalian cells.Neurosci. Lett., 340, 234–238 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanjoo Chun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suh, MD., Park, CH., Kim, SS. et al. Tissue transglutaminase is not involved in the aggregate formation of stably expressed α-synuclein in sh-sy5y human neuroblastoma cells. Arch Pharm Res 27, 850–856 (2004). https://doi.org/10.1007/BF02980178

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02980178

Key words

Navigation