Skip to main content
Log in

Liquid fragility—A key to going deep into materials of glassy states

  • Review
  • Published:
Chinese Science Bulletin

Abstract

“Liquid fragility” is a concept that has been widely used in the investigation on the glass community, though it was presented less than two decades ago. The concept enables the comparison between the glass-forming liquids with different dynamic characters by using a general criterion, in which the temperature scale is reduced by the glass transition temperature. In order to illuminate the significance of the concept in the fields of the glass transition, structural relaxation process and the structure of supercooled liquids, the accomplished progress and the faced challenges are summarized from different aspects such as on the correlation between dynamics and thermodynamic characters of condensed matters, on the energy landscape, on the nonexponential relaxation and on the theoretical model of microstructure and medium-range order. The tendency of investigation in “liquid fragility” is also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angell, C. A., Spectroscopy simulation and scattering, and the medium range order problem in glass, J. Non-Cryst. Solids, 1985, 73(1–3): 1–17.

    Article  Google Scholar 

  2. Richert, R., Angell, C. A., Dynamics of glass-forming liquids, Part V: On the link between molecular dynamics and configurational entropy, J. Chem. Phys., 1998, 108(21): 9016–9026.

    Article  Google Scholar 

  3. Angell, C. A., Formation of glasses from liquids and biopolymers, Science, 1995, 267(5208): 1924–1926.

    Article  Google Scholar 

  4. Sare, J. M., Sare, E. J., Angell, C. A., Viscous flow in simple organic liquids, J. Chem. Phys., 1978, 68(6): 2622–2624.

    Google Scholar 

  5. Angell, C. A., Ngai, K. L., Mckenna, G. B. et al., Relaxation in glassforming liquids and amorphous solids, J. Appl. Phys., 2000, 88(6): 3113–3157.

    Article  Google Scholar 

  6. Kauzmann, W., The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev., 1948, 43(2): 219–256.

    Article  Google Scholar 

  7. Adam, G., Gibbs, J. H., On the temperature dependence of cooperative relaxation properties in glass-forming liquids, J. Chem. Phys., 1965, 43(1): 139–146.

    Article  Google Scholar 

  8. Martinez, L. M., Angell, C. A., A thermodynamic connection to the fragility of glass-forming liquids, Nature, 2001, 410(6829): 663–667.

    Article  Google Scholar 

  9. Ito, K., Moynihan, C. T., Angell, C. A., Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water, Nature, 1999, 398(6727): 492–495.

    Article  Google Scholar 

  10. Huang, D. H., Gregory, B., New insights into the fragility dilemma in liquids, J. Chem. Phys., 2001, 114(13): 5621–5629.

    Article  Google Scholar 

  11. Moriya, K., Matsuo, T., Suga, H. et al., Intrinsic mobility of molecular glasses, Chem. Lett. (Jpn), 1977, 58(3): 1427–1430.

    Article  Google Scholar 

  12. Roland, C. M., Santangelo, P. G., Ngai, K. L., The application of the energy landscape model to polymers, J. Chem. Phys., 1999, 111(12): 5593–5597.

    Article  Google Scholar 

  13. Angell, C. A., Specific heats Cp, Cv, Cconf and energy landscapes of glassforming liquids, Journal of Non-crystalline Solids, 2002, 307-310: 393–406.

    Article  Google Scholar 

  14. Takahara, S., Yamamuro, O., Matsuo, T., Calorimetric study of 3-bromopentane-correlation between structural relxation time and configurational entropy, J. Phys. Chem., 1995, 99(23): 9580–9592.

    Article  Google Scholar 

  15. Angell, C. A., Richards, B. E., Velikov, V., Simple glass-forming liquids: Their definition, fragilities, and landscape excitation profiles, J. Phys.: Condens. Matter, 1999, 11(10A): 75–94.

    Article  Google Scholar 

  16. Green, J. L., Ito, K., Xu, K. et al., Fragility in liquids and polymers: New, simple quantifications and interpretations, J. Phys. Chem. B, 1999, 103(20): 3991–3996.

    Article  Google Scholar 

  17. Rastogi, S., Hohne, G. W. H., Keller, A., Unusual pressure-induced phase behavior in crystalline poly(4-methylpentene-1):calorimetric and spectroscopic results and further implications, Macromolecules, 1999, 32(26): 8897–8909.

    Article  Google Scholar 

  18. Greer, A. L., Too hot to melt, Nature, 2000, 404(6774): 134–135.

    Article  Google Scholar 

  19. Speedy, R. J., The hard sphere glass transition, Mol. Phys., 1998, 95 (2): 169–178.

    Article  Google Scholar 

  20. Scala, A., Starr, F., Sciortino, F. et al., Configurational entropy and diffusion of supercooled water, Nature, 2000, 406(6792): 166–169.

    Article  Google Scholar 

  21. Sastry, S., Liquid limits: the glass transition and liquid-gas spinodal boundaries of metastable liquids, Phys. Rev. Lett., 2000, 85(3): 590–593.

    Article  Google Scholar 

  22. Gibbs, J. H., Dimarzio, E. A., Nature of the glass transition and the glassy state, J. Chem. Phys., 1958, 28(1): 373–383.

    Article  Google Scholar 

  23. Angell, C. A., Structural instability and relaxation in liquid and glassy phases near fragile liquid limit, J. Non-Cryst. Solids, 1988, 102(1–3): 205–221.

    Article  Google Scholar 

  24. Cicerone, M. T., Ediger, M. D., Relaxation of spatially heterogeneous dynamic domains in supercooled ortho-terphenyl, J. Chem. Phys., 1995, 103(13): 5684–5692.

    Article  Google Scholar 

  25. Cicerone, M. T., Ediger, M. D., Enhanced translation of probe molecules in supercooled o-terphenyl: Signature of spatially heterogeneous dynamics, J. Chem. Phys., 104(18): 7210–7218.

  26. Bohmer, R., Hinze, G., Diezemann, G. et al., Dynamic heterogeneity on supercooled ortho-terphenyl studied by multidimensional deuteron NMR, Europhys. Lett., 1996, 36(1): 55–60.

    Article  Google Scholar 

  27. Hurley, M. M., Harrowell, P., Non-gaussian behavior and the dynamical complexity of particle motion in a dense two-dimensional liquid, J. Chem. Phys., 1996, 105(23): 10521–10526.

    Article  Google Scholar 

  28. Perara, D. N., Harrowell, P., Measuring diffusion in supercooled liquids: The effect of kinectic inhomogeneties, J. Chem. Phys., 1996, 104(6): 2369–2375.

    Article  Google Scholar 

  29. Perara, D. N., Harrowell, P., Consequence of kinetic inhomogeneities in glasses, Phys. Rev. E, 1996, 54(2): 1652–1662.

    Article  Google Scholar 

  30. Angell, A., Liquid landscape, Nature, 1998, 393(6683): 521–524.

    Article  Google Scholar 

  31. Debenedetti, P. G., Stillinger, F. H., Truskett, T. M. et al., The equation of state of an energy landscape, J. Phys. Chem. B, 1999, 103(35): 7390–7397.

    Article  Google Scholar 

  32. Cohen, M. H., Grest, G. S., Liquid-glass transition, a free volume approach, Phys. Rev. B, 1979, 20(3): 1077–1098.

    Article  Google Scholar 

  33. Rossler, E., Sokolov, A. P., The dynamics of strong and fragile glass formers, Chemical Geology, 1996, 128(1–4): 143–153.

    Article  Google Scholar 

  34. Goldbart, P. M., Zippelius, A., Statistical mechanics of continous random networks: A model glass transition, Europhys. Lett., 1994, 27(2): 599–604.

    Article  Google Scholar 

  35. Gotze, W., Sjogren, L., Relaxation processes in supercooled liquids, Rep. Prog. Phys., 1992, 55(1–2): 241–376.

    Article  Google Scholar 

  36. van Megen, W., Underwood, S. M., Dynamic light scattering study of glasses of hard colloidal spheres, Phys. Rev. E., 1993, 47(1): 248–260.

    Article  Google Scholar 

  37. Hansen, J. P., The kinetic glass transition: What can we learn from molecular dynamics simulations, Physica A, 1993, 201(1–3): 138–149.

    Article  Google Scholar 

  38. Torell, L. M., Borjesson, L., Sokolov, A. P., The liquid-glass transition in a strong glass former, Trans. Theory Statist. Phys., 1995, 24(1): 248–260.

    Google Scholar 

  39. Sudha, S., Shankar, P., Fragility and boson peak formation in a supercooled liquid, Phys. Lett. A, 2001, 286(1): 76–79.

    Article  Google Scholar 

  40. Sokolov, A. P., Rossler, E., Kisliuk, A. et al., Dynamics of strong and fragile glass formers: Differences and Correlation with low-temperature properties, Phys. Rev. Lett, 1993, 71(13): 2062–2065.

    Article  Google Scholar 

  41. Sokolov, A. P., Kisliuk, A. Soltwisch, M. et al., Medium-range order in glasses: Comparison of roman and diffraction measurements, Phys. Rev. Lett., 1992, 69(10): 1540–1543.

    Article  Google Scholar 

  42. Williams, G., Watts, D. C., Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function, Trans. Faraday Soc., 1970, 66: 80–85.

    Article  Google Scholar 

  43. Melcuk, A. I., Ramos, R. A. Gould, H. et al., Long-lived structures in fragile glass-forming liquids, Phys. Rev. Lett., 1995, 75(13): 2522–2525.

    Article  Google Scholar 

  44. Hurley, M. M., Harrowell, P., Non-gaussian behavior and the dynamical complexity of particle motion in a dense two-dimensional liquid, J. Chem. Phys., 1996, 105(23): 10521–10526.

    Article  Google Scholar 

  45. Wolynes, P. G., Aperiodic crystals: Biology, chemistry and physics in a fugue with stretto, AIP Conf. Proc., 1988, 180: 39–65.

    Article  Google Scholar 

  46. Bohmer, R., Ngai, K. L., Angell, C. A. et al., Nonexponential relaxations in strong and fragile glass forming liquids, J. Chem. Phys., 1993, 99(5): 4201–4210.

    Article  Google Scholar 

  47. Johari, G. P., Goldstein, M., Viscous liquids and the glass transition, Part II: Secondary relaxations in glasses of rigid molecules, J. Chem. Phys., 1970, 53(6): 2372–2388.

    Article  Google Scholar 

  48. Angell, C. A., Ngai, K. L., Mckenna, G. B. et al., Relaxation in glassforming liquids and amorphous solids, J. Appl. Phys., 2000, 88(6): 3113–3155.

    Article  Google Scholar 

  49. Alba, C., Busse, L. E., List, D. L. et al., Thermodynamic aspects of the vitrification of toluene, and xylene isomers, and the fragility of liquid hydrocarbons, J. Chem. Phys., 1990, 92(1): 617–624.

    Article  Google Scholar 

  50. Perera, D. N., Compilation of fragility parameters for metallic glasses, J. Phys.: Condensed Matter, 1999, 11(19): 3807–3812.

    Article  Google Scholar 

  51. Busch, R., Masuhr, A., Bakke, E. et al., Nanoscale heterogeneity of glass forming liquids: Experimental advances, Mater. Res. Soc. Symp. Proc., 1997, 455: 369–374.

    Google Scholar 

  52. Gerhard, W., Thermodynamics, viscous flow and relaxation dynamics of bulk glass-forming Pd alloys, Ann. Chim. Sci. Mat., 2002, 27(5): 49–54.

    Article  Google Scholar 

  53. Chebli, K., Saiter, J. M., Grenet, J. et al., Strong-fragile glassforming liquid concept applied to GeTe chalcogenide glasses, Physica B, 2001, 304(1–4): 228–236.

    Article  Google Scholar 

  54. Ralf, A. R., A method to determine the kinetics of a supercooled liquid by temperature scanning measurements applied to (NaLi) acetate and GeO2, Journal of Non-Crystalline Solids, 1999, 248(2–3): 183–193.

    Google Scholar 

  55. Sastry, S., Debenedetti, P. G., Stillinger, F. H., Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid, Nature, 1998, 393(6685): 554–557.

    Article  Google Scholar 

  56. Angelani, L., Leonardo, R., Ruocco, G. et al., Saddles in the energy landscape probed by supercooled liquids, Phys. Rev. Lett., 2000, 85(25): 5356–5359.

    Article  Google Scholar 

  57. Calvo-Dahlborg, M., Dahlborg, U. Barkalov, O. I. et al., Neutron scattering study of bulk amorphous GaSb, J. Non-crystl. Solids, 1999, 244(2–3): 250–258.

    Article  Google Scholar 

  58. Tsuji, K., Katayama, Y., Koyama, N. et al., Amorphization from quenched high-pressure phase in tetrahedrally bonded materials, J.Non-crystal. Solids, 1993, 156(2): 540–548.

    Article  Google Scholar 

  59. Agladze, N. I., Sievers, A. J., Absence of an isotope effect in the two levels spectrum of amorphous ice, Phys. Rev. Lett., 1998, 80(19): 4209–4212.

    Article  Google Scholar 

  60. Speedy, R. J., Debenedetti, P. G., Smith, R. S. et al., The evaporation rate, free energy, and entropy of amorphous water at 150 K, J.Chem. Phys., 1996, 105(1): 240–244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Lina.

About this article

Cite this article

Lina, H., Bian, X. Liquid fragility—A key to going deep into materials of glassy states. Chin. Sci. Bull. 49, 1–9 (2004). https://doi.org/10.1007/BF02901735

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02901735

Keywords

Navigation