Skip to main content
Log in

Influence of nickel and copper on liquid structure of CuAlNi shape memory alloys

  • Notes
  • Published:
Chinese Science Bulletin

Abstract

Liquid structure of molten pure Cu, Cu-12Al, Cu-12Al-4Ni (mass fraction, %) alloys has been investigated using the X-ray diffraction method. It is found that the main peak of the structure factor of pure Cu is symmetrical. In the front of main peak, the curve takes on a shape of parabola, whereas a distinct pre-peak has been found around a scattering vector magnitude of 18.5 nm−1 in the structure factor of the liquid Cu-12Al alloy. This pre-peak increases its intensity with the addition of Ni in the liquid Cu-12Al-4Ni alloy. The appearance of a pre-peak is a mark of the mediate-range order. Based on Daken-Gurry theory and according to mutual interaction between unlike atoms, the analysis of correlation between different composition and liquid structure was done: the strong interaction exists between Cu and Ni, so Cu-Al can form strong chemical bond which causes compound-forming behavior. Therefore, the medium-range size clusters can form in melt. The presence of the pre-peak corresponds to these clusters. The addition of Ni can strengthen the interaction between unlike atoms and increase the sizes of clusters, thus result in the height of pre-peak increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bian, X. F., Wang, W. M., Thermal-rate treatment and structure transformation of Al-13% Si alloy melt, Mater. Lett., 2000, 44: 54.

    Article  Google Scholar 

  2. Bian, X. F., Wang, W. M., Qin, J. Y., Liquid structure of Al-12.5% Si alloy modified by antimony, Mater. Char., 2000, 43: 1.

    Google Scholar 

  3. Krishnan, R. V., Delaey, L., Tas, H., Thermoplasticity, pseudoelasticity and the memory effects associated with martensitic transformations, J. mater. Sci., 1974, 9: 1536.

    Article  Google Scholar 

  4. Bubley, I. R., Koval, Y. N., Titov, P. V.,β 1-γ transformation in Cu-Mn-Al alloys after low temperature aging, Scr. Met., 1999, 41: 637.

    Article  Google Scholar 

  5. Nagarjuna, S., Srinivas, M., Balasubramanian, K. et al., Influence of polycrystalline grain size on yield and flow stress in Cu-1.5 wt% Ti alloy, Scr. Met., 1994, 30: 1593.

    Article  Google Scholar 

  6. Wei, Z. G., Peng, H. Y., Zou, W. H. et al., Aging effects in a Cu12Al5Ni2Mn1Ti shape memory alloy, Metall. Mater. Trans A., 1997, 28: 955.

    Article  Google Scholar 

  7. Kainuma, R., Takahashi, S., Ishida, K., Thermoelastic martensite and shape memory effect in ductile CuAlMn alloys, Metall Mater. Trans. A., 1996, 27: 2187.

    Article  Google Scholar 

  8. Waseda, Y., The Structure of Non-crystalline Matrials, New York: McGRAW-HILL, 1980, 27–36, 56.

    Google Scholar 

  9. Giessen, B. C., in Liquid Metalls (ed. Sylvan, Z. B.), New York: Marcel Dekker Inc., 1972, 652.

    Google Scholar 

  10. Qin, J. Y., Bian, X. F., Wang, W. M. et al., Pre-peak on the structure of liquid hypoeutectic Al-Fe alloy, Chinese Science Bulletin, 1998, 43(14): 1219.

    Article  Google Scholar 

  11. Parish, W., Wilson, A. J. C., International Tables for X-ray Crystallography, England Birmingham: Kynoch, 1974, IV: 74, 78, 149.

    Google Scholar 

  12. Cromer, D. T., Mann, J. B., Compton scattering factors for spherical symmetric free atoms, J. Chem. Phys., 1967, 47: 1892.

    Article  Google Scholar 

  13. Hoyer, W., Jodicke, R., Short-range and medium-range order in liquid Au-Ge alloys, J. Non-Cryst. Solids, 1995, 193: 102.

    Article  Google Scholar 

  14. Cervinka, L., Several remarks on the medium-rang order in glasses, J. Non-Cryst. Solids, 1998, 132-134: 1.

    Article  Google Scholar 

  15. Manh, D. N., Mayu, D., Pasture, A. et al., Electronic structure and hybridization effects in transition-metal-polyvalent-metal alloys, J. Phys. F: Met. Phys., 1985, 15: 1911.

    Article  Google Scholar 

  16. Sokolv, A. P., Kisliuk, A., Soltwisch, M. et al., Medium-range order in glasses: Comparison of Raman and diffraction measurements, Phy. Rev. Lett., 1992, 69: 1540.

    Article  Google Scholar 

  17. Vateva, E., Savova, E., New medium-range order features in Ge-Sb-S glasses, J. Non-Cryst. Solids, 1995, 192-193: 145.

    Article  Google Scholar 

  18. Wang Yinghua, Technological Basis for X-ray Diffraction (in Chinese), Beijing: Atomic Energy Press, 1993, 194.

    Google Scholar 

  19. Cahn, R. W., Hassen, P., Physical Metallurgy, 3rd ed., NorthHolland Physics Publishing, 1983.

  20. Gschneidner, K. A., Theory of Alloy Phase Formation (ed. Remnett, L. H.), The Metallurgical Society of AIME, 1980, 1.

  21. Zumdahl, S. S., Chemistry, Third Edition, Massachusetts: D.C. Heath Company, 1986.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemin Pan.

About this article

Cite this article

Pan, X., Bian, X. Influence of nickel and copper on liquid structure of CuAlNi shape memory alloys. Chin.Sci.Bull. 47, 86–89 (2002). https://doi.org/10.1007/BF02901105

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02901105

Keywords

Navigation