Skip to main content
Log in

Engineering the interface energetics of solar cells by grafting molecular properties onto semiconductors

  • Photochemical Conversion And Storage Of Solar Energy
  • Published:
Proceedings / Indian Academy of Sciences Aims and scope Submit manuscript

Abstract

The electronic properties of semiconductor surfaces can be controlled by binding tailor-made ligands to them. Here we demonstrate that deposition of a conducting phase on the treated surface enables control of the performance of the resulting device. We describe the characteristics of the free surface of single crystals and of polycrystalline thin films of semiconductors that serve as absorbers in thin film polycrystalline, heterojunction solar cells, and report first data for actual cell structures obtained by chemical bath deposition of CdS as the window semiconductor. The trend of the characteristics observed by systematically varying the ligands suggests changes in work function rather than in band bending at the free surface, and implies that changes in band line-up, which appear to cause changes in band bending, rather than direct, ligand-induced band bending changes, dominate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. cf. 13th NREL Photovoltaic Program Review, Ullal H S and Witt C E 1996 eds., AIP Conf. 353 (AIP, Woodbury)

  2. Conf. Rec.25th Photovoltaic Specialists Conference, Washington, May 13–17, 1996 (IEEE, NY, NY), in press.

  3. “Polycrystalline Semiconductors III, — Physics and Technology”, H P Strun, J H Werner, B Fortin, O Bonnaud 1994 eds., (Scitech, Switzerland)

    Google Scholar 

  4. cf. special issue of Solar Cells, 1986 16

  5. Shay J L, Wagner S and Kasper H M 1975Appl. Phys. Lett. 27 p. 89

    Article  CAS  Google Scholar 

  6. Kazmerski L L, Ayyagari M S, White F R and Sanborn G A 1976J. Vac. Sci. Technol. 13 p. 139

    Article  CAS  Google Scholar 

  7. Basol B M 1992J. Vac. Sci. Technol. A10 p. 2006

    Article  Google Scholar 

  8. Rockett A and Birkmire R W 1991J. Appl. Phys. 70 p. R81

    Article  CAS  Google Scholar 

  9. Rockett A,et al 1994Thin Solid Films 237 p. 1

    Article  CAS  Google Scholar 

  10. Hedström J,et al 1993Proc. 23rd IEEE Photovoltaics Specialists Conf. Louisville, KY, p. 364; cf. also Stolt Let al in Proc. 13th Europ. PV Solar Energy Conf. (Nice, France 10/’95); J. R Tuttleet al ibidem; S Zweigartet al, ibidem; Y. Ohtakeet al in ref. 1b; T Wada in ref. 1b.

  11. Braunger Det al. in ref. 1b; Braunger Det al 1996 Sol. En. Mater. Sol. Cells, 40 p. 97; T. Walteret al, 13th Eur. PV Solar En. Conf. and Exhibition (Nice, France, 1995), (in press).

  12. Klenk R, Schock H W 1994 12th Eur. PV Solar En. Conf. and Exhibition, Amsterdam, April 11–15, p. 1588.

  13. Saad M, Riazi H, Bucher E, Lux-Steiner M Ch, 1996Appl. Phys. A62 p. 181

    Google Scholar 

  14. Schock H W, 1994 12th Eur. PV Solar En. Conf. and Exhibition, Amsterdam, April 11–15, p. 944.

  15. Hariskos D, Ruckh M, Walter T, Schock H W 1994 1st WCPEC (IEEE, Hawaii), p. 91

  16. Hariskos D, Herberholz R, Ruckh M, Rühle U, Schäffler R and Schock H W 1995 13th European Photovoltaic Solar Energy Conference and Exhibition (Nice, France), (in press).

  17. Lincot D, Ortega-Borges R, Vedel J, Ruckh M, Kessler J, Velthaus K O, Hariskos D and Schock H W 1992 11th EC PV Solar Energy Conf. (Montreux)

  18. Dagan D, Ciszek T, Cahen D 1992Phys. Chem.,96 p. 11009

    Article  CAS  Google Scholar 

  19. Cahen D, Noufi R 1989Appl. Phys. Lett. 67 p. 558

    Article  Google Scholar 

  20. Cahen D and Noufi R 1991Solar Cells,30 p. 53

    Article  CAS  Google Scholar 

  21. Mirovsky Y, Cahen D, Hodes G, Tenne R and Giriat W 1981Sol. En. Mats. 4 p. 169

    Article  CAS  Google Scholar 

  22. Lokhande C D and Hodes G 1987Solar Cells,21 215

    Article  CAS  Google Scholar 

  23. Siripala Wet al 1993Appl. Phys. Lett. 62 p. 519

    Article  CAS  Google Scholar 

  24. Moons Eet al 1993Jpn. J. Appl. Phys. 32 Suppl. 32–3, p. 730

    Article  CAS  Google Scholar 

  25. Bruening Met al 1994J. Amer. Soc. 116 p. 2972

    Article  CAS  Google Scholar 

  26. Bruening Met al 1995J. Phys. Chem. 99 8368

    Article  CAS  Google Scholar 

  27. Bruening M 1996Controlling Semiconductor and Metal Surfaces via Organic Ligand Adsorption. Ph. D. thesis, Feinberg Grad. School. Weizmann Institute of Science.

  28. Kepler K D, Lisensky G C, Patel M, Sigworth L A and Ellis A 1995J. Phys. Chem.

  29. Zweigart Set al 1995 in Proc. 13th Europ. PV Solar Energy Conf. (Nice, France 10)

  30. Kronik Let al 1995Appl. Phys. Lett.,67 1405

    Article  CAS  Google Scholar 

  31. Petty M C, Bryce M R, Bloor D 1995 An introduction to molecular electronics” (Arnold, London)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gal, D., Sone, E., Cohen, R. et al. Engineering the interface energetics of solar cells by grafting molecular properties onto semiconductors. J Chem Sci 109, 487–496 (1997). https://doi.org/10.1007/BF02869208

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02869208

Keywords

Navigation