Skip to main content
Log in

Wave-intensity analysis: a new approach to left ventricular filling dynamics

  • Originals
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Summary

In order to explore a new approach to the analysis of diastolic dysfunction, we adapted wave-intensity analysis (WIA), a time-domain analysis that provides information regarding both upstream and downstream events, to left ventricular (LV) filling. WIA considers the pressure and flow waves as summations of successive wavelets, characterised by the direction they travel and by the sign of the pressure gradient associated with them. Wave intensity is the product, dPdU, calculated from the incremental differences in LV pressure (dP) and mitral velocity (dU) and, during the diastolic filling interval, yields up to five dPdU peaks.Peak 1 is caused by backward-travelling expansion waves that accelerate the blood while LV pressure falls, and may be related to “diastolic suction”.Peak 2 is caused by forward-travelling compression waves which occur if acceleration continues after LV pressure begins to increase.Peak 3 is caused by backward compression waves and is associated with rising LV pressure and deceleration.Peak 4 is caused by forward compression waves and is associated with the increasing LV pressure and acceleration caused by atrial contraction.Peak 5 is caused by backward compression waves and is associated with increasing pressure and deceleration. These preliminary observations suggest that WIA can be useful in describing the mechanics of LV filling and, after much further work has been accomplished, it might prove useful in the detection and characterization of diastolic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parker KH, Jones CJH (1990) Forward and backward running waves in the arteries: Analysis using the method of characteristics. J Biomech Eng 112:322–326

    PubMed  CAS  Google Scholar 

  2. Parker KH, Jones CJH, Dawson JR, Gibson DG (1988) What stops that flow of blood from the heart? Heart Vessels 4:241–245

    Article  PubMed  CAS  Google Scholar 

  3. Jones CJH, Sugawara M, Davies RH, Kondoh Y, Uchida K, Parker KH (1994) Arterial wave intensity: Physical meaning and physiological significance. In: Hosoda S, Yaginuma T, Sugawara M, Taylor MG, Caro CG (eds) Recent progress in cardiovascular mechanics. Harwood, Chur, Switzerland, pp 129–148

    Google Scholar 

  4. Jones CJH, Parker KH, Hughes R, Sheridan DJ (1992) Nonlinearity of human arterial pulse wave transmission. J Biomech Eng 114:10–14

    PubMed  CAS  Google Scholar 

  5. Jones CJH, Sugawara M (1993) Wavefronts’ in the aorta — implications for the mechanisms of left ventricular ejection and aortic valve closure. Cardiovasc Res 27:1902–1905

    Article  PubMed  CAS  Google Scholar 

  6. Rushmer RF (1964) Initial ventricular impulse. A potential key for cardiac evaluation. Circulation 29:268–283

    PubMed  CAS  Google Scholar 

  7. Euler L (1775) Principia pro moto sanguinis per arterias determinando. Anonymous Leonhardi Euleri Opera Omnia, ser. 2, vol. 16 (1979) Societatis Scientiarum Naturalium Helvetice, Berne, pp 178–196

    Google Scholar 

  8. Jones CHJ, Song GJ, Gibson DG (1991) An echocardiographic assessment of atrial mechanical behaviour. Br Heart J 65:31–36

    Article  PubMed  CAS  Google Scholar 

  9. Little WC, Badke FR, O’Rourke RA (1984) Effect of right ventricular pressure on the end-diastolic left ventricular pressure-volume relationship before and after chronic right ventricular pressure overload in dogs without pericardia. Circ Res 54:719–730

    PubMed  CAS  Google Scholar 

  10. Ohno M, Cheng C-P, Little WC (1994) Mechanism of altered patterns of left ventricular filling during the development of congestive heart failure. Circulation 89:2241–2250

    PubMed  CAS  Google Scholar 

  11. Cheng C, Freeman GL, Santamore WP, Constantinescu MS, Little WC (1990) Effect of loading conditions, contractile state, and heart rate on early diastolic left ventricular filling in conscious dogs. Circ Res 66:814–823

    PubMed  CAS  Google Scholar 

  12. Katz LN (1930) The role played by the ventricular relaxation process in filling the ventricle. Am J Physiol 95:542–553

    Google Scholar 

  13. Tyberg JV, Keon WJ, Sonnenblick EH, Urschel CW (1970) Mechanics of ventricular diastole. Cardiovasc Res 4:423–428

    PubMed  CAS  Google Scholar 

  14. Sabbah HN, Stein PD (1981) Negative diastolic pressure in the intact canine right ventricle. Evidence of diastolic suction. Circ Res 49:108–113

    PubMed  CAS  Google Scholar 

  15. Ingels NB Jr, Fann JI, Daughters GT, Nikolic SD, Miller DC (1994) Left ventricular volume is not constant during “isovolumic” contraction and relaxation using standard LV models [abstract] Circulation 90:I-431

    Google Scholar 

  16. Salisbury PF, Cross CE, Rieben PA (1963) Chorda tendinea tension. Am J Physiol 205:385–392

    PubMed  CAS  Google Scholar 

  17. Sovak M, Lynch PR, Stewart GH (1973) Movement of the mirtral valve and its correlation with the first heart sound. Selective valvular visualization and high-speed cineradiography in intact dogs. Invest. Radiol 8:150–155

    Article  PubMed  CAS  Google Scholar 

  18. Hawthorne EW (1961) Instantaneous dimensional changes of the left ventricle in dogs. Cir Res 9:110–119

    CAS  Google Scholar 

  19. Bove AA (1971) Radiographic evaluation of dynamic geometry of the left ventricle. J Appl Physiol 31:277–234

    Google Scholar 

  20. Tsakiris AG, Gordon DA, Padiyar R, Frechette D (1978) Relation of mitral valve opening and closure to left atrial and ventricular pressures in the intact dog. Am J Physiol Heart Circ Physiol 234:H146-H151

    CAS  Google Scholar 

  21. Altieri PI (1973) Left ventricular wall motion during the isovolumic relaxation period. Circulation 48:499–505

    PubMed  CAS  Google Scholar 

  22. Ruttley MS, Adams DF, Cohn PF, Abrams HL (1974) Shape and volume changes during “isovolumetric relaxation” in normal and asynergic ventricles. Circulation 50:306–316

    PubMed  CAS  Google Scholar 

  23. Thomas JD, Choong CYP, Flachskampf FA, Weyman AE (1990) Analysis of the early transmitral Doppler velocity curve: Effect of primary physiologic changes and compensatory preload adjustment. J Am Coll Cardiol 16:644–655

    Article  PubMed  CAS  Google Scholar 

  24. Nishimura RA, Abel MD, Hatle LK, Tajik AJ (1989) Assessment of diastolic function of the heart: Background and current applications of Doppler echocardiography. Part II. Clinical studies. Mayo Clin Proc 64:181–204

    PubMed  CAS  Google Scholar 

  25. Brecher GA, Kissen AT (1957) Relation of negative intraventricular pressure to ventricular volume. Circ Res 5:157–162

    PubMed  CAS  Google Scholar 

  26. Hori M, Yellin EL, Sonnenblick EH (1982) Left ventricular diastolic suction as a mechanism of ventricular filling. Jpn Circ J 46:124–129

    PubMed  CAS  Google Scholar 

  27. Nikolic S, Yellin EL, Tamura K, Vetter H, Tamura T, Meisner JS, Frater RWM (1988) Passive properties of canine left ventricle: Diastolic stiffness and restoring forces. Circ Res 62:1210–1222

    PubMed  CAS  Google Scholar 

  28. Suga H, Goto Y, Igarashi Y, Yamada O, Nozawa T, Yasumura Y (1986) Ventricular suction under zero source pressure for filling. Am J Physiol Heart Circ Physiol 251:H47-H55

    CAS  Google Scholar 

  29. Iwazumi T, ter Keurs HEDJ (1987) Mechanical properties of single cardiac myocytes and ultra-small trabeculae of rat [abstract]. Circulation 76:IV-331

    Google Scholar 

  30. Rushmer RF, Crystal DK, Wagner C (1953) The functional anatomy of ventricular contraction. Circ Res 1:162

    PubMed  CAS  Google Scholar 

  31. Hui WKK, Gibson DG (1985) The dynamics of rapid left ventricular filling in man. Adv Cardiol 32:7–35

    PubMed  CAS  Google Scholar 

  32. Hui WKK, Gibson DG (1983) Mechanisms of reduced left ventricular filling rate in coronary artery disease. Br Heart J 50:362–371

    Article  PubMed  CAS  Google Scholar 

  33. Courtois M, Kovacs SJ Jr, Ludbrook PA (1988) Transmitral pressure-flow velocity relation: Importance of regional pressure gradients in the left ventricle during diastole. Circulation 78:661–671

    PubMed  CAS  Google Scholar 

  34. Little WC, Ohno M, Kitzman DW, Thomas JD, Cheng C-P (1995) Determination of left ventricular chamber stiffness from the time for deceleration of early left ventricular filling. Circulation 92:1933–1939

    PubMed  CAS  Google Scholar 

  35. Tyberg JV, Smith ER (1990) Ventricular diastole and the role of the pericardium. Herz 15:354–361

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacRae, J.M., Sun, YH., Isaac, D.L. et al. Wave-intensity analysis: a new approach to left ventricular filling dynamics. Heart Vessels 12, 53–59 (1997). https://doi.org/10.1007/BF02820867

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02820867

Key words

Navigation