Skip to main content
Log in

Neurodegenerative mechanisms in alzheimer disease

A role for oxidative damage in amyloid β protein precursor-mediated cell death

  • Published:
Molecular and Chemical Neuropathology

Abstract

We have established a stably transformed human neuroblastoma cell line (MC65) that conditionally expresses a C-terminal derivative of the amyloid β protein precursor (βPP) termed SβC (a fusion protein composed of the amino-17 and carboxyl-99 residues of βPP). Conditional expression of SggbC (mediated by the withdrawal of tetracycline from the culture medium) induces pronounced nuclear DNA fragmentation and cytotoxicity in this cell line. These effects are enhanced by hyperoxygen and suppressed by hypooxygen and antioxidants. This cell line is relatively insensitive to the extracellular application of amyloid β25-35, and coculture experiments suggest that this cytotoxicity 0 is mediated by an intracellular process. These findings suggest that the overexpression of the C-terminal domain of βPP can disrupt normal cellular processes in these cells in such a way as to induce a directed (deoxyribonuclease-mediated) mechanism of cell death. This process appears to be modulated and/or mediated by a reactive oxygen specie(s) (ROS). Consistent with a role for ROS in the process of SβC-mediated toxicity, we have found that the MC65 cell line is hypersensitive to oxidative stress and that it is this sensitivity that appears (at least in part) to underlie its susceptibility to SβC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames B. N., Shigenaga M. K., and Hagen T. M. (1993) Oxidants, antioxidants, and the degenerative diseases of aging.Proc. Natl. Acad. Sci. USA 90, 7915–7922.

    Article  PubMed  CAS  Google Scholar 

  • Andorn A. C., Britton R. S., and Bacon B. R. (1990) Evidence that lipid peroxidation and total iron are increased in Alzheimer’s brain.Neurobiol. Aging 11, 316–321.

    Google Scholar 

  • Behl C., Davis J. B., Lesley R., and Schubert D. (1994) Hydrogen peroxide mediates amyloid β protein toxicity.Cell 77, 817–827.

    Article  PubMed  CAS  Google Scholar 

  • Carney J. M., Starke-Reed P. E., Oliver C. N., Landum R. W., Cheng M. S., Wu J. F., and Floyd R. A. (1991) Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spacial memory by chronic administration of the spin-trapping compoundN-tert-butyl-alpha-phenylnitrone.Proc. Natl. Acad. Sci. USA 88, 3633–3636.

    Article  PubMed  CAS  Google Scholar 

  • Citron M., Oltersdorf T., Haass C., McConlogue L., Hung A. Y., Seubert P., Vigo-Pelfrey C., Lieberburg I., and Selkoe D. J. (1992) Mutation of the betamyloid precursor protein in familial Alzheimer’s disease increases beta-protein production.Nature 360, 672–674.

    Article  PubMed  CAS  Google Scholar 

  • Eaton D. L. and Hamel D. M. (1994) Increase in γ-glutamylcysteine synthetase activity as a mechanism for butylated hydroxyanisole-mediated elevation of hepatic glutathione.Toxicol. Appl. Pharmacol. 126, 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi K., Kamino K., Deeb S. S., Smith A. C., Dang T., and Martin G. M. (1992) Overexpression of amyloid precursor protein alters its normal processing and is associated with neurotoxicity.Biochem. Biophys. Res. Commun. 182, 165–173.

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi K., Sopher B., Furlong C. E., Smith A. C., Dang T., and Martin G. M. (1993a) Selective neurotoxicity of COOH-terminal fragments of the beta-amyloid precursor protein.Neurosci. Lett. 154, 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi K., Sopher B., and Martin G. M. (1993b) Neurotoxicity of beta-amyloid.Nature 361, 122–123.

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi K., Ogburn C. E., Smith A. C., Kunkel D. D., Furlong C. E., Deeb S. S. Nochlin D., Sumi S. M., and Martin G. M. (1993c) Transgenic animal models for Alzheimer’s disease.Ann. NY Acad. Sci. 695, 217–223.

    Article  PubMed  CAS  Google Scholar 

  • Games D., Adams, D., Alessandrini R., Barbour R., Berthelette P., Blackwell C., Carr T., Clemens J., Donaldson T., Gillespie F., Guido T., Hagopian S., Johnson-Wood K., Khan K., Lee M., Leibowitz P., Lieberburg I., Little S., Masliah E., McConlogue L., Montoya-Zavala M., Mucke L., Paganini L., Penniman E., Power M., Schenk D., Seubert P., Snyder B., Soriano F., Tan H., Vitale J., Wadsworth S., Wolozin B., and Zhao J. (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F-amyloid precursor protein.Nature 373, 523–527.

    Article  PubMed  CAS  Google Scholar 

  • Golde T. E., Cai X. D., Shoji M., and Younkin S. G. (1993) Production of amyloid beta protein from normal amyloid beta-protein precursor (beta APP) and the mutated beta APPS linked to familial Alzheimer’s disease.Ann. NY Acad. Sci. 695, 103–108.

    Article  PubMed  CAS  Google Scholar 

  • Gossen M. and Bujard H. (1992) Tight control of gene expression in mammalian cells by tetracycline responsive promoters.Proc. Natl. Acad. Sci. USA 89, 5547–5551.

    Article  PubMed  CAS  Google Scholar 

  • Haecker G. and Vaux D. L. (1994) Viral, worm and radical implications for apoptosis.Trends Biochem. Sci. 19, 99–100.

    Article  PubMed  CAS  Google Scholar 

  • Hallick R. B., Chelm B. K., Gray P. W., and Orozco E. M. Jr (1977) Use of aurintricarboxylic acid as an inhibitor of nucleases during nucleic acid isolation.Nucleic Acids Res. 4, 3055–3064.

    Article  PubMed  CAS  Google Scholar 

  • Hansen M. B., Nielsen S. E., and Berg K. (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill.J. Immunol. Methods 119, 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Hardy J. (1994) Alzheimer’s disease. Clinical molecular genetics.Clin. Geriatr. Med. 10, 239–247.

    PubMed  CAS  Google Scholar 

  • Hensley, K., Carney J. M., Mattson M. P., Aksenova M., Harris M., Wu J. F., Floyd R. A., and Butterfield D. A. (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease.Proc. Natl. Acad. Sci. USA 91, 3270–3274.

    Article  PubMed  CAS  Google Scholar 

  • Hensley K., Howard B. J., Carney J. M., and Butterfield D. A. (1995). Membrane protein alterations in rodent erythrocytes and synaptosomes due to aging and hyperoxia.Biochim. Biophys. Acta 1270, 203–206.

    PubMed  Google Scholar 

  • Hockenbery D. M., Oltvai Z. N., Yin X. M., Milliman C. L., and Korsmeyer S. J. (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis.Cell 75, 241–251.

    Article  PubMed  CAS  Google Scholar 

  • Hopp L. and Bunker C. H. (1993) Lipophilic impurity of phenol red is a potent cation transport modulator.J. Cell Physiol. 157, 594–602.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, J. A., Cowburn R. F., Norgren S., Wiehager B., Venizelos N., Winblad B., Vigo-Pelfrey C., Schenk D., Lannfelt, L., and O’Neill C. (1994) Increased beta-amyloid release and levels of amyloid precursor protein (APP) in fibroblast cell lines from family members with the Swedish Alzheimer’s disease. APP670/671 mutation.FEBS Lett. 354, 274–278.

    Article  PubMed  CAS  Google Scholar 

  • Joseph R., Tsang W., Han E., and Saed G. M. (1993) Neuronal β-amyloid protein gene expression: regulation by aurintricarboxylic acid.Brain Res. 625, 244–255.

    Article  PubMed  CAS  Google Scholar 

  • Kane D. J., Sarafian T. A., Anton R., Hahn H., Gralla E. B., Valentine J. S., Ord T., and Bredesen D. E. (1993) Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species.Science 262, 1274–1277.

    Article  PubMed  CAS  Google Scholar 

  • Kang J., Lemaire H. G., Unterbeck A., Salbaum J. M., Masters C. L., Grzeschik K. H., Multhaup G., Beyreuther K. and Muller-Hill B. (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor.Nature 325, 733–736.

    Article  PubMed  CAS  Google Scholar 

  • Lees G. J. (1993) Contributory mechanisms in the causation of neurodegenerative disorders.Neuroscience 4, 287–322.

    Article  Google Scholar 

  • Maruyama K., Kumagae Y., Saito Y., Yamao-Harigaya W., Usami M., Ishiura S., Kawashima S., and Obata K. (1994) The toxic effects of Alzheimer amyloid protein precursor overexpressed in the neuroblastoma cell line NB-1 on neurite outgrowth.Gerontology 40, 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Muller U., Cristina N., Li Z. W., Wolfer D. P., Lipp H. P., Rulicke T., Brandner S., and Aguzzi A. (1994) Behavioral and anatomic deficits in mice homozygous for a modified β-amyloid precursor protein gene.Cell 79, 755–765.

    Article  PubMed  CAS  Google Scholar 

  • Shoji M., Golde T. E., Ghiso J., Cheung T. T., Estus S., Shaffer L. M., Cai X. D., McKay D. M., Tintner R., and Frangione B. (1992) Production of the Alzheimer amyloid beta protein by normal proteolytic processing.Science 258, 126–129.

    Article  PubMed  CAS  Google Scholar 

  • Smith C. D., Carney J. M., Starke-Reed P.E., Oliver C. N., Stadtman E. R., Floyd R. A., and Markesbery W. R. (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease.Proc. Natl. Acad. Sci. USA 88, 10,540–10,543.

    CAS  Google Scholar 

  • Sopher B. L., Fukuchi K. I., Smith A. C., Leppig K. A., Furlong C. E., and Martin G. M. (1994) Cytotoxicity mediated by conditional expression, of a carboxylterminal derivative of the β-amyloid precursor protein.Mol. Brain Res. 26, 207–217.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N., Cheung, T. T., Cai X. D., Odaka A., Otvos L. Jr, Eckman C., Golde T. E. and Younkin S. G. (1994) An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants.Science 264, 1336–1340.

    Article  PubMed  CAS  Google Scholar 

  • Williams G. T. and Smith C. A. (1993) Molecular regulation of apoptosis: genetic controls on cell death.Cell 74 777–779.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski K E., Wisniewski H. M., and Wen G. Y. (1985) Occurences of neuropathological changes in dementia of Alzheimer’s disease in Down’s syndrome.Ann. Neurol. 17, 278–282.

    Article  PubMed  CAS  Google Scholar 

  • Yankner B. A., Dawes L. R., Fisher S., Villa Komaroff L., Oster Granite M. L., and Neve R. L. (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease.Science 245, 417–420.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa K., Aizawa, T., and Hayashi Y. (1992) Degeneration in vitro of postmitotic neurons overexpressing the Alzheimer amyloid protein precursor.Nature 359, 64–67.

    Article  PubMed  CAS  Google Scholar 

  • Zheng H., Jiang M., Trumbauer M. E., Sirinathsinghji D. J. S., Hopkins R., Dawson G. R., Boyce S., Conner M. W., Stevens K. A., Slunt H. H., Sisodia S. S., Chen H. Y., and Van der Ploeg L. H. T. (1995) β-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity.Cell 81, 525–531.

    Article  PubMed  CAS  Google Scholar 

  • Zhong Z., Quon D. Higgins L. S., Higaki J., and Cordell B. (1994) Increased amyloid production from aberrant beta-amyloid precursor proteins.J. Biol. Chem. 269, 12,179–12,184.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sopher, B.L., Fukuchi, KI., Kavanagh, T.J. et al. Neurodegenerative mechanisms in alzheimer disease. Molecular and Chemical Neuropathology 29, 153–168 (1996). https://doi.org/10.1007/BF02814999

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814999

Index Entries

Navigation