Skip to main content
Log in

The relative importance of terrestrial versus marine sediment sources to the Nueces-Corpus Christi Estuary, Texas: An isotopic approach

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Determining sources of sediment to coastal systems is an important and complex problem that figures prominently in a myriad of geological, geomorphological, geochemical, and biological processes. Lithogenic (226Ra,228Ra,228Th,230Th,232Th) and fallout (137Cs,210Pb) isotopes were employed in conjunction with sedimentological methods to determine rates of sedimentation in the Nueces Delta and Nueces-Corpus Christi Estuary and to assess the relative importance of marine versus terrestrial sediment sources to the estuary. Similarity of lithogenic isotope ratios in surface sediments throughout the system precluded a numeric approach to discerning the importance of each of the two large scale sediment sources (terrestrial and marine). A stepwise, graphical examination of discrete lithogenic isotope activity concentrations shows more promise. Terrestrial, marine, and bay sediment means for226Ra versus232Th,226Ra versus230Th, and228Ra versus232Th show that terrestrial and marine sediment sources have different signatures, despite having similar grain size distributions (sands), and that sediment deposited in Nueces and Corpus Christi Bays are indistinguishable from the terrestrial component. Supporting evidence is provided by thorium isotopes,230Th versus232Th,228Th versus232Th, and228Th versus230Th. Nueces Delta sedimentation (0.09–0.53 g cm−2 yr−1) shows a subtle gradient, with rates generally lower in the west and progressively higher moving east, likely reflecting contrasts in land use and topography. Nueces Bay cores differ from those in Corpus Christi Bay in that sands comprise a larger percentage of their composition, and they are mixed over greater depth, most likely due to geographic and physiographic effects. Sediment accumulation rates consistently decrease over the first 20 km from the Nueces River and become constant after that, implying that the river is the most significant source of sediment to the estuary. The interpretation of sediment supply to this estuary as dominated by terrestrial inputs is based on three complimentary sets of data: sediment grain size distributions, discrete lithogenic isotope data (Ra versus Th and Th versus Th), and sediment accumulation rates for both Nueces and Corpus Christi Bays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Ames, L. L., J. E. McGarrah, andB. A. Walker. 1983. Sorption of trace constituents from aqueous solutions onto secondary minerals II: Radium.Clays and Clay Minerals 31:335–342.

    Article  CAS  Google Scholar 

  • Baskaran, M., C. H. Coleman, andP. H. Santschi. 1993. Atmospheric depositional fluxes of7Be and210Pb at Galveston and College Station, Texas.Journal of Geophysical Research 98:20555–20571.

    Article  Google Scholar 

  • Baskaran, M. andP. H. Santschi. 1993. The role of particles and colloids in the transport of radionuclides in coastal environments of Texas.Marine Chemistry 43:95–114.

    Article  CAS  Google Scholar 

  • Benoit, G., T. F. Rozan, P. C. Patton, andC. L. Arnold. 1999. Trace metals and radionuclides reveal sediment sources and accumulation rates in Jordan Cove, Connecticut.Estuaries 22:65–80.

    Article  CAS  Google Scholar 

  • Binford, M. W. 1990. Calculation and uncertainty analysis of210Pb dates for PIRLA project lake sediment cores.Journal of Paleolimnology 3:253–267.

    Article  Google Scholar 

  • Brown, Jr.,L. F., R. A. Morton, J. H. McGowen, C. W. Kreitler, andW. L. Fisher. 1974. Natural hazards of the Texas coastal zone. Bureau of Economic Geology, University of Texas at Austin, Austin, Texas.

    Google Scholar 

  • Buckner, H. D., E. R. Carrillo, and H. D. Davidson. 1986. Water resources data, Texas: Water year 1985, Volume 3, Colorado River Basin, Lavaca River Basin, Guadalupe River Basin, Nueces River Basin, Rio Grande Basin and intervening basins. U.S. Geological Survey Water-Data Report TX-85-3, Austin, Texas.

  • Buesseler, K. O., J. K. Cochran, M. P. Bacon, H. D. Livingston, S. A. Casso, D. Hirschberg, M. C. Hartman, andA. P. Fleer. 1992. Determination of thorium isotopes in seawater by nondestructive and radiochemical procedures.Deep Sea Research 39:1103–1114.

    Article  CAS  Google Scholar 

  • Cooper, J. A. G. 2001. Geomorphological variability among microtidal estuaries from the wave-dominated South African coast.Geomorphology 40:99–122.

    Article  Google Scholar 

  • Craft, C. B. andC. J. Richardson. 1993. Peat accretion and N, P, and organic accumulation in nutrient-enriched and unenriched Everglades peatlands.Journal of Applied Ecology 3:446–458.

    Article  Google Scholar 

  • Curtis, W. F., J. K. Culbertson, and E. B. Chase. 1973. Fluvial sediment discharge to the oceans from the conterminous United States. U.S. Geological Survey Circular 670, Washington, D.C.

  • Elsinger, R. J. andW. S. Moore. 1984.226Ra and228Ra in the mixing zone of the Pee Dee River-Winyah Bay, Yangtze River and Delaware Bay estuaries.Estuarine Coastal and Shelf Science 18:601–613.

    Article  CAS  Google Scholar 

  • Eyre, B., S. Hossain, andL. McKee. 1998. A suspended sediment budget for the modified subtropical Brisbane River estuary, Australia.Estuarine Coastal and Shelf Science 47:513–522.

    Article  Google Scholar 

  • Folk, R. L. 1965. Petrology of Sedimentary Rocks, Hemphill Publishing Company, Austin, Texas.

    Google Scholar 

  • Galloway, W. E. 1977. Catahoula formation of the Texas coastal plain: Depositional systems, composition, structural development, groundwater flow history, and uranium distribution. Bureau of Economic Geology, University of Texas, Austin, Report Investigation No. 87, Austin, Texas.

    Google Scholar 

  • Hallstadius, L. 1984. A method for the electrodeposition of actinides.Nuclear Instruments and Methods in Physics Research 223:266–267.

    Article  CAS  Google Scholar 

  • Hobday, D. K. andW. E. Galloway. 1999. Groundwater processes acid sedimentary uranium deposits.Journal of Hydrogeology 7:127–138.

    Article  Google Scholar 

  • Huntley, S. L., R. J. Wenning, S. H. Su, N. L. Bonnevie, andD. J. Paustenbach. 1995. Geochronology and sedimentology of the lower Passaic River, New Jersey.Estuaries 18:351–361.

    Article  CAS  Google Scholar 

  • Ivanovich, M. andR. S. Harmon. 1992. Uranium-Series Disequilibrium: Applications to Environmental Problems. Clarendon Press, Oxford, U.K.

    Google Scholar 

  • Ivanovich, M. andR. S. Harmon. 1992. Uranium-Series Disequilibrium: Applications to Earth, Marine and Environmental Sciences, 2nd edition. Clarendon Press, Oxford, U.K.

    Google Scholar 

  • Jenkins, P. A., R. W. Duck, J. S. Rowan, andJ. Walden. 2002. Fingerprinting of bed sediment in the Tay Estuary, Scotland: An environmental magnetism approach.Hydrology and Earth System Sciences 6:1007–1016.

    Google Scholar 

  • Kaufman, A. 1969. Thorium-232 concentration of surface ocean water.Geochimica et Cosmochimica Acta 33:717–724.

    Article  CAS  Google Scholar 

  • Key, R. M., R. F. Stallard, W. S. Moore, andJ. L. Sarmiento. 1985. Distribution and flux of Ra-226 and Ra-228 in the Amazon River estuary.Journal of Geophysical Research 90:6995–7004.

    Article  CAS  Google Scholar 

  • Kim, J. G. andE. Rejmankova. 2002. Recent history of sediment deposition in marl and sand based marshes of Belize, Central America.Catena 48:267–291.

    Article  CAS  Google Scholar 

  • Leibbrand, N. F. 1987. Estimated sediment deposition in Lake Corpus Christi, Texas, 1977–1985. U.S. Geological Survey Open File Report 87-239, Washington, D.C.

  • Li, Y. H., G. G. Mathieu, P. Biscaye, andH. J. Simpson. 1977. The flux of Ra-226 from estuarine and continental shelf sediments.Earth and Planetary Science Letters 37:237–241.

    Article  CAS  Google Scholar 

  • Longley, W. L. (ed.). 1994. Freshwater inflows to Texas bays and estuaries: Ecological relationships and methods for determination of needs. Texas Water Development Board and Texas Parks and Wildlife Department, Austin, Texas.

    Google Scholar 

  • Morton, R. A. andJ. G. Paine. 1984. Historical shoreline changes in Corpus Christi, Oso, and Nueces Bays, Texas Gulf coast. Geological Circular 84-6. Bureau of Economic Geology, University of Texas at Austin, Austin, Texas.

    Google Scholar 

  • Murray, A. S., G. Caitcheon, J. Olley, andH. Crockford. 1990. Methods for determining the sources of sediments reaching reservoirs: Targeting soil conservation.Ancold Bulletin 85:61–70.

    Google Scholar 

  • Oktay, S. D., P. H. Santschi, J. E. Moran, andP. Sharma. 2000. The129Iodine bomb pulse recorded in Mississippi River Delta sediments: Results from isotopes of I, Pu, Cs, Pb and C.Geochimica et Cosmochimica Acta 64:989–996.

    Article  CAS  Google Scholar 

  • Olley, J. M. andA. S. Murray. 1994. Origins of the variability in the230Th/232Th ratio in sediments, p. 65–70.In L. J. Olive, R. J. Loughran, and J. A. Kesby (eds.), Variability in Stream Erosion and Sediment Transport. IAHS publication 224:65–70. International Association of Hydrological Sciences (IAHS) Press, Wallingford, Oxfordshire, U.K.

    Google Scholar 

  • Olley, J. M., A. S. Murray, D. H. MacKenzie, andK. Edwards. 1993. Identifying sediment sources in a gullied catchment using natural and anthropogenic radioactivity.Water Resources Research 29:1037–1043.

    Article  CAS  Google Scholar 

  • Pandoe, W. W. andB. L. Edge. 2004. Cohesive sediment transport in the 3D-hydrodynamic-baroclinic circulation model, study case for idealized tidal inlet.Ocean Engineering 31:2227–2252.

    Article  Google Scholar 

  • Ratzlafe, K. W. 1980. Land surface subsidence in the Texas coastal region. U.S. Geological Survey, Open-File Report 80-969, Washington, D.C.

  • Ravichandran, M., M. Baskaran, P. H. Santschi, andT. S. Bianchi. 1995a. Geochronology of sediments of Sabine-Neches estuary, Texas,Chemical Geology 125:291–306.

    Article  CAS  Google Scholar 

  • Ravichandran, M., M. Baskaran, P. H. Santschi, andT. S. Bianchi. 1995b. History of trace metal pollution in Sabine-Neches estuary, Texas.Environmental Science and Technology 29: 1495–1503.

    Article  CAS  Google Scholar 

  • Riese, A. C. 1982. Adsorption of radium and thorium onto quartz and kaolinite: A comparison of solution/surface equilibria models. Ph.D. Dissertation, Colorado School of Mines, Golden, Colorado.

    Google Scholar 

  • Robbins, J. A. 1978. Geochemical and geophysical application of radioactive lead, p. 285–393.In J. O. Nriagu (ed.), The Biogeochemistry of Lead in the Environment, Volume 2. Elsevier, New York.

    Google Scholar 

  • Roberts, H. M. andA. J. Plater. 1999. U-and Th-series disequilibria in coastal infill sediments from Praia da Rocha (Algarve Region, Portugal): A contribution to the study of late Quaternary weathering and erosion,Geomorphology 26:223–238.

    Article  Google Scholar 

  • Rodriguez, A. B., M. L. Fassell, andJ. B. Anderson. 2001. Variations in shoreface progradation and ravinement along the Texas coast, Gulf of Mexico.Sedimentology 48:837–853.

    Article  CAS  Google Scholar 

  • Santschi, P. H., M. Allison, S. Asbill, A. B. Perlet, S. Cappellino, C. Dobbs, andL. McShea. 1999. Sediment transport and Hg recovery in Lavaca Bay, as evaluated from radionuclide and Hg distribution.Environmental Science and Technology 33:378–391.

    Article  CAS  Google Scholar 

  • Santschi, P. H., L. Guo, S. Asbill, M. Allison, A. B. Kepple, andL. W. Wen. 2001a. Accumulation rates and sources of sediments and organic carbon on the Palos Verde shelf based on radioisotope tracers (137Cs,239,240Pu,219Th,238U and14C).Marine Chemistry 73:125–152.

    Article  CAS  Google Scholar 

  • Santschi, P. H., Y.-H. Li, andJ. Bell. 1979 Natural radionuclides in Narragansett Bay.Earth and Planetary Science Letters 45:201–213.

    Article  CAS  Google Scholar 

  • Santschi, P. H., Y. H. Li, J. Bell, R. M. Trier, andK. Kawtaluk. 1980. Plutonium in the coastal marine environment.Earth and Planetary Science Letters 51:248–265.

    Article  CAS  Google Scholar 

  • Santschi, P. H., B. J. Presley, T. L. Wade, B. Garcia-Romero, andM. Baskaran. 2001b. Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores.Marine Environmental Research 52:51–79.

    Article  CAS  Google Scholar 

  • Tanner, A. B.. 1964. Physical and chemical controls on distribution of radium-226 and radon-222 in ground water near Great Salt Lake, Utah, Natural Radiation Environment, p. 253–276.In J. S. Adams and W. M. Lowder (eds.), Proceedings of the International Symposium Houston, 1963, University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Texas Water Development Board (TWDB). 1997. Water for Texas: A consensus-based update to the State Water Plan, Volume II. Texas Water Development Board, Austin, Texas.

    Google Scholar 

  • Valero-Garces, B., A. Navas, J. Machin, andD. Walling. 1999. Sediment sources and siltation in mountain reservoirs: A case study from the Central Spanish Pyrenees.Geomorphology 28:23–41.

    Article  Google Scholar 

  • Walker, H. J., andJ. M. Coleman. 1987. Atlantic and Gulf Coastal Province, p. 51–110.In W. L. Graf (ed.) Geomorphic systems of North America: Centennial Special Volume 2. Geological Society of America, Boulder, Colorado.

    Google Scholar 

  • Walsh, J. P. andC. A. Nittrouer. 2003. Contrasting styles of offshelf sediment accumulation in New Guinea.Marine Geology 196:105–125.

    Article  CAS  Google Scholar 

  • Webster, I. T., G. J. Hancock, andA. S. Murray. 1995. Modelling the effect of salinity on radium desorption from sediments.Geochimica et Cosmochimica Acta 59:2469–2476.

    Article  CAS  Google Scholar 

  • White, W. A. and T. R. Calnan. 1990a. Sedimentation in fluvialdeltaic wetlands and estuarine areas, Texas Gulf coast: Literature synthesis. Report to Texas Parks and Wildlife Department by the Bureau of Economic Geology, University of Texas at Austin, Austin, Texas.

  • White, W. A. and T. R. Calnan. 1990b. Sedimentation and historical changes in fluvial-deltaic wetlands along the Texas Gulf coast with emphasis on the Colorado and Trinity River deltas. Report to the Texas Wildlife Department by Bureau of Economic Geology, University of Texas at Austin, Austin, Texas.

  • White, W. A., R. A. Morton, andC. W. Holmes. 2002. A comparison of factors controlling sedimentation rates and wetland loss in fluvial-deltaic systems, Texas Gulf coast.Geomorphology 44:47–66.

    Article  Google Scholar 

  • Winkels, H., S. Kroonenberg, M. Lychagin, G. Marin, G. Rusakov, andN. Kasimov. 1998. Geochronology of priority pollutants in sedimentation zones of the Volga and Danube delta in comparison with the Rhine delta.Applied Geochemistry 13:581–591.

    Article  CAS  Google Scholar 

  • Yeager, K. M. andP. H. Santschi. 2003. Invariance of isotope ratios of lithogenic radionuclides: More evidence for their use as sediment source tracers.Journal of Environmental Radioactivity 69:159–176.

    Article  CAS  Google Scholar 

  • Yeager, K. M., P. H. Santschi, J. D. Phillips, andB. E. Herbert. 2002. Sources of alluvium in a coastal plain stream based on radionuclide signatures from the238U and232Th decay series.Water Resources Research 38:24-1–24-11.

    Article  Google Scholar 

  • Yeager, K. M., P. H. Santschi, J. D. Phillips, andB. E. Herbert. 2005. Suspended sediment sources and tributary effects in the lower reaches of a coastal plain stream as indicated by radionuclides, Loco Bayou, Texas.Environmental Geology 47: 382–395.

    Article  CAS  Google Scholar 

Sources of Unpublished Materials

  • Yeager, K. M., P. H. Santschi, K. J. Schindler, M. J. Andres, and E. A. Weaver. unpublished data available at http:// estuariesandcoasts.org/journal/ESTU2006/ESTU2006_29_3_443_454_S.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Yeager.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeager, K.M., Santschi, P.H., Schindler, K.J. et al. The relative importance of terrestrial versus marine sediment sources to the Nueces-Corpus Christi Estuary, Texas: An isotopic approach. Estuaries and Coasts: J ERF 29, 443–454 (2006). https://doi.org/10.1007/BF02784992

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784992

Keywords

Navigation