Skip to main content
Log in

Application ofBacteroides fragilis phage as an alternative indicator of sewage pollution in Tampa Bay, Florida

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Traditional fecal coliform bacterial indicators have been found to be severely limited in determining the significance and sources of fecal contamination in ambient waters of tropical and subtropical regions. The bacteriophages that infectBacteroides fragilis have been suggested as better fecal indicators and at least one type may be human specific. In this study, the phages that infectB. fragilis host RYC2056 (RYC), including phage B56-3, and host ATCC 51477-HSP40 (HSP), including the human specific phage B40-8, were evaluated in the drainage basins of Tampa Bay, 7 samples (n=62), or 11%, tested positive for the presence of phages infecting the host HSP, whereas 28 samples, or 45%, tested positive using the host RYC. A survival study was also done to compare the persistence of phages B56-3 and B40-8 to MS2 coliphage in seawater at various temperatures. The decay rates for MS2 were 0.239 log10 d−1 at 10°C, but increased to 0.896 at 20°C and 2.62 log10 d−1 at 30°C. The twoB. fragilis phages persisted much longer in the seawater compared to the coliphage and showed little variation between the temperatures. All sewage influents sampled from area wastewater treatment plants contained phages that infected the twoB. fragilis hosts at levels from 1.2×104 to 1.11×105 pfu 100 ml−1 for host RYC and 67 to 350 pfu 100 ml−1 for host HSP. Of the 7 chlorinated effluent samples tested, 3 were positive for the presence of the phage using the host RYC and the phage enrichment method, with levels estimated to be <10 pfu 100 ml−1. No phages were detected using the host HSP in the treated sewage effluent. Coliphages were found in 3 of the 7 effluent samples at a range of 30 to 1.2×103 pfu 100 ml−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Ackermann, H.-W. andM. S. DuBow. 1987. Viruses of Prokaryotes, Volume 1. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Allsop, K. andD. J. Stickler. 1984. The enumeration ofBacteroides fragilis group organisms from sewage and natural waters.Journal of Applied Bacteriology 56:15–24.

    CAS  Google Scholar 

  • American Public Health Association (APHA). 1998. American Water Works Association and the Water Environmental Federation, p. 91–9131.In A. E. Greenburg, L. S. Clesceri, and A. D. Eaton (eds.), Standard Methods for the Examination and Water and Wastewater, 21st edition. American Public Health Association, Washington, D. C.

    Google Scholar 

  • Araujo, R. M., J. Lasobras, F. Lucena, andJ. Jofre. 1993. Methodological improvements for the recovery ofB. fragilis phages and coliphages from environmental samples.Water Science and Technology 27:119–122.

    Google Scholar 

  • Araujo, R. M., A. Puig, J. Lasobras, F. Lucena, andJ. Jofre. 1997. Phages of enteric bacteria in fresh water with different levels of faecal pollution.Journal of Applied Microbiology 82:281–286.

    Article  CAS  Google Scholar 

  • Bisson, J. W. andV. J. Cabelli. 1979. Membrane filtration enumeration method forClostridium perfringens.Applied and Environmental Microbiology 37:55–66.

    CAS  Google Scholar 

  • Bosch, A., C. Tartera, R. Gajardo, J. M. Diez, andJ. Jofre. 1989. Comparative resistance of bacteriophages active againstBacteroides fragilis to inactivation by chlorination or ultraviolet-radiation.Water Science and Technology 21:221–226.

    CAS  Google Scholar 

  • Byappanahalli, M. N. andR. S. Fujioka. 1998. Evidence that tropical soil environment can support the growth ofEscherichia coli.Water Science and Technology 38:171–174.

    Article  CAS  Google Scholar 

  • Chung, H. andM. D. Sobsey. 1993. Comparative survival of indicator viruses and enteric viruses in seawater and sediments.Water Science and Technology 27:425–428.

    Google Scholar 

  • Contreras-Coll, N., F. Lucena, K. Mooijman, A. Havelaar, V. Pierzo, M. Boque, A. Gawler, C. Holler, M. Lambiri, G. Mirolo, B. Moreno, M. Niemi, R. Sommer, B. Valentin, A. Wiedenmann, V. Young, andJ. Jofre. 2002. Occurrence and levels of indicator bacteriophages in bathing waters throughout Europe.Water Research 36:4963–4974.

    Article  CAS  Google Scholar 

  • Duran, A. E., M. Muniesa, X. Mendez, F. Valero, F. Lucena, andJ. Jofre. 2002. Removal and inactivation of indicator bacteriophage in fresh waters.Journal of Applied Microbiology 92:338–347.

    Article  CAS  Google Scholar 

  • Edberg, S. C., H. LeClerc, andJ. Robertson. 1997. Natural protection of spring and well drinking water against surface microbial contamination. II. Indicators and monitoring parameters for parasites.Critical Reviews in Microbiolog 23:179–206.

    Article  CAS  Google Scholar 

  • Fleisher, J. M., D. Kay, R. L. Salmon, F. Jones, M. D. Wyer, andA. F. Godfree. 1996. Marine waters contaminated with domestic sewage: Nonenteric illnesses associated with bather exposure in the United Kingdom.American Journal of Public Health 86:1228–1234.

    CAS  Google Scholar 

  • Fujioka, R. S. 2001. Monitoring coastal marine waters for sporeforming bacteria of faecal and soil origin to determine point from non-point source pollution.Water Science and Technology 44:181–188.

    CAS  Google Scholar 

  • Fujioka, R. S. andL. K. Shizumura. 1985. Clostridium perfringens: A reliable indicator of stream water quality.Journal of Water Pollution Control Federation 57:986–992.

    Google Scholar 

  • Gallagher, T. P. andD. F. Spino. 1968. The significance of numbers of coliform bacteria as an indicator of enteric pathogens.Water Research 2:169–175.

    Article  Google Scholar 

  • Grabow, W. O. K., T. E. Neubrech, C. S. Holtzhausen, andJ. Jofre. 1995.Bacteroides fragilis andEscherichia coli bacteriophages: Excretion by humans and animals.Water Science and Technology 31:223–230.

    Article  Google Scholar 

  • Griffin, D. W., C. J. Gibson III,E. K. Lipp, K. Riley, J. H. Paul, andJ. B. Rose. 1999. Detection of viral pathogens by reverse transcriptase PCR and of microbial indicators by standard methods in the canals of the Florida Keys.Applied and Environmental Microbiology 65:4118–4125.

    CAS  Google Scholar 

  • Griffin, D. W., E. K. Lipp, M. R. McLaughlin, andJ. B. Rose. 2001. Marine recreation and public health microbiology: Quest for the ideal indicator.BioScience 51:817–825.

    Article  Google Scholar 

  • Havelaar, A. H., K. Furuse, andW. M. Hogeboom. 1986. Bacteriophages and indicator bacteria in humans and animal feces.Journal of Applied Bacteriology 60:255–262.

    CAS  Google Scholar 

  • Holdeman, L. V., I. J. Good, andW. E. C. Moore. 1976. Human fecal flora: Variation in bacterial composition within individuals and a possible effect of emotional stress.Applied and Environmental Microbiology 31:359–375.

    CAS  Google Scholar 

  • International Standards Protocol. 2001. Water Quality—Detection and Enumeration of Bacteriophages, Enumeration of Bacteriophages Infecting Bacteroides fragilis, ISO protocol CD 1070504 (ISO/TC147/SC 4WG 11 N36), International Organization for Standardization, ISO Central Secretariat, 1 rue de Varembe, Case postale 56, CH-1211, Geneva 20, Switzerland. www.iso.org.

    Google Scholar 

  • Jofre, J., M. Blasi, A. Bosch, andF. Lucena. 1989. Occurrence of bacteriophages infectingBacteroides fragilis and other viruses in polluted marine sediments.Water Science and Technology 21:15–19.

    CAS  Google Scholar 

  • Jofre, J., A. Bosch, F. Lucena, R. Girones, andC. Tartera. 1986. Evaluation ofBacteroides fragilis bacteriophages as indicators of the virological quality of water.Water Science and Technology 18:167–173.

    CAS  Google Scholar 

  • Kreader, C. A. 1995. Design and evaluation of Bacteroides DNA probes for the specific detection of human fecal pollution.Applied and Environmental Microbiology 61:1171–1179.

    CAS  Google Scholar 

  • Lasobras, J., M. Muniesa, J. Frias, F. Lucena, andJ. Jofre. 1997. Relationship between the morphology of bacteriophages and their persistence in the environment.Water Science and Technology 35:129–132.

    Article  CAS  Google Scholar 

  • Lipp, E. K. 1999. The occurrence, distribution and transport of human pathogens in coastal waters of southwest Florida. Ph.D. Dissertation, Department of Marine Science, University of South Florida, Tampa, Florida.

    Google Scholar 

  • Lipp, E. K., R. Kurz, R. Vincent, C. Rodriquez-Palcois, S. R. Farrah, andJ. B. Rose. 2001. The effects of seasonal variability and weather on microbial fecal pollution and enteric pathogens in a subtropical estuary.Estuaries 24:266–276.

    Article  CAS  Google Scholar 

  • Lucena, F., R. Araujo, andJ. Jofre. 1996. Usefulness of bacteriophages infectingBacteroides fragilis as index microorganisms of remote faecal pollution.Water Research 30:2812–2816.

    Article  CAS  Google Scholar 

  • Lucena, F., X. Mendez, A. Moron, E. Calderon, C. Campos, A. Guerrero, M. Cardenas, C. Gantzer, L. Shwartzbrood, S. Skraber, andJ. Jofre. 2003. Occurrence and densities of bacteriophages proposed as indicators and bacterial indicators in river waters from Europe and South America.Journal of Applied Microbiology 94:808–815.

    Article  CAS  Google Scholar 

  • Lucena, F., M. Muniesa, A. Puig, R. Araujo, andJ. Jofre. 1995. Simple concentration method for bacteriophages ofBacteroides fragilis in drinking water.Journal of Virological Methods 54:121–130.

    Article  CAS  Google Scholar 

  • Mooijman, K. A., Z. Ghameshlou, M. Bahar, J. Jofre, andA. H. Havelaar. 2005. Emumeration of bacteriophages in water by different laboratories of the European Union in two interlaboratory comparison studies.Journal of Virological Methods 127:60–68.

    Article  CAS  Google Scholar 

  • National Resource Defense Council Report (NRDC). 2004. Testing the Waters 2004: A Guide to Water Quality at Vacation Beaches. M. Dorfman (ed.), 14th edition, National Resource Defense Council Publications Department, New York.

    Google Scholar 

  • Puig, A., J. Jofre, andR. Araujo. 1997. Bacteriophages infecting variousBacteroides fragilis strains differ in their capacity to distinguish human from animal faecal pollution.Water Science and Technology 35:359–362.

    Article  CAS  Google Scholar 

  • Puig, A., N. Queralt, J. Jofre, andR. Araujo. 1999. Diversity ofBacteroides fragilis strains in their capacity to recover phages from human and animal wastes and from fecally polluted wastewater.Applied and Environmental Microbiology 65:1772–1776.

    CAS  Google Scholar 

  • Sinton, L. W., R. K. Finlay, andD. J. Hannah. 1998. Distinguishing human from animal faecal contamination in water—A review.New Zealand Journal of Marine and Freshwater Research 32:323–348.

    Article  Google Scholar 

  • Skraber, S., C. Gantzer, A. Maul, andL. Schwartzbrod. 2002. Fates of bacteriophages and bacterial indicators in the Moselle river (France).Water Research 36:3629–3637.

    Article  CAS  Google Scholar 

  • Sun, Z. P., Y. Levi, L. Kiene, N. Dumoutier, andF. Lucena. 1997. Quantification of bacteriophages ofBacteroides fragilis in environmental water samples of Seine River.Water Air and Soil Pollution 96:175–183.

    CAS  Google Scholar 

  • Tartera, C., R. Araujo, T. Michel, andJ. Jofre. 1992. Culture and decontamination methods affecting enumeration of phages infectingBacteroides fragilis in sewage.Applied and Environmental Microbiology 58:2670–2673.

    CAS  Google Scholar 

  • Tartera, C. andJ. Jofre. 1987. Bacteriophages active againstBacteroides fragilis in sewage polluted waters.Applied and Environmental Microbiology 53:1632–1637.

    CAS  Google Scholar 

  • Tartera, C., J. Jofre, andF. Lucena. 1988. Relationship between numbers of enteroviruses and bacteriophages infectingBacteroides fragilis in different environmental samples.Environmental Technology Letters 9:407–410.

    Article  Google Scholar 

  • Tartera, C., F. Lucena, andJ. Jofre. 1989. Human origin ofBacteroides fragilis bacteriophages present in the environment.Applied and Environmental Microbiology 55:2696–2701.

    CAS  Google Scholar 

  • U.S. Environmental Protection Agency (USEPA). 1986. Ambient Water Quality Criteria for Bacteria. Document number EPA 440/5-84-002. USEPA, Washington, D. C.

    Google Scholar 

  • Yates, M. V., C. P. Gerba, andL. M. Kelley. 1985. Virus persistence in groundwater.Applied and Environmental Microbiology 49:778–781.

    CAS  Google Scholar 

  • Yates, M. V. andR. Scott. 1988. Modeling microbial fate in the subsurface environment.CRC Critical Reviews in Environmental Control 17:307–344.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan B. Rose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLaughlin, M.R., Rose, J.B. Application ofBacteroides fragilis phage as an alternative indicator of sewage pollution in Tampa Bay, Florida. Estuaries and Coasts: J ERF 29, 246–256 (2006). https://doi.org/10.1007/BF02781993

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02781993

Keywords

Navigation