Skip to main content
Log in

Organelles in fast axonal transport

What molecules do they carry in anterograde vs retrograde directions, as observed in mammalian systems?

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The present minireview describes experiments carried out, in short-term crush-operated rat nerves, using immunofluorescence and cytofluorimetric scanning techniques to study endogenous substances in anterograde and retrograde fast axonal transport. Vesicle membrane components p38 (synaptophysin) and SV2 are accumulating on both sides of a crush, but a larger proportion of p38 (about 3/4) than of SV2 (about 1/2) is recycling toward the cell body, compared to the amount carried with anterograde transport. Matrix peptides, such as CGRP, ChrA, VIP, and DBH are recycling to a minor degree, although only 10–20% of surface-associated molecules, such as synapsins and kinesin, appear to recycle.

The described methodological approach to study the composition of organelles in fast axonal transport, anterograde as compared to retrograde, is shown to be useful for investigating neurobiological processes. We make use of the “in vivo chromatography” process that the fast axonal transport system constitutes. Only substances that are in some way either stored in, or associated with, transported organelles can be clearly observed to accumulate relative to the crush region.

Emphasis in this paper was given to the synapsins, because of diverging results published concerning the degree of affiliation with various neuronal organelles. Our previously published results have indicated that in the living axons the SYN I is affiliated with mainly anterogradely fast transported organelles. Therefore, some preliminary, previously unpublished results on the accumulations of the four different synapsins (SYN Ia, SYN Ib, SYN IIa, and SYN IIb), using antisera specific for each of the four members of the synapsin family, are described. It was found that SYN Ib clearly has a stronger affiliation to anterogradely transported organelles than SYN Ia, and that both SYN IIa and SYN IIb are bound to some degree to transported organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen R. D., Travis J. L., Strömgren Allen N., and Yilmaz H. (1981) Video-enhanced contrast polarization (AVEC-POL) Microscopy: a new method applied to the detection of birefringence in the motile reticulopodial network of Allogromia laticollaris.Cell. Motil. 1, 275–289.

    Article  PubMed  CAS  Google Scholar 

  • Amos W. B., White J. G., and Fordham M. (1987) Use of conforcal imaging in the study of biological structures.Applied Optics 26, 3239–3243.

    Google Scholar 

  • Baitinger C. and Willard M. (1987) Axonal transport of synapsin I-like proteins in the rabbit retinal ganglion cells.J. Neurosci. 7, 3723–3735.

    PubMed  CAS  Google Scholar 

  • Bisby M. (1987) Does recycling have functions other than disposal?Axonal Transport (Smith R. S. and Bisby M. A., eds.).Neurology and Neurobiology 25, Liss, New York, pp. 365–383.

    Google Scholar 

  • Bisby M. A. and Bulger V. T. (1977) Reversal of axonal transport at a nerve crush.J. Neurochem. 29, 313–320.

    Article  PubMed  CAS  Google Scholar 

  • Bloom G. S., Wagner M. C., Pfister K. K., and Brady S. T. (1988) Native structure and physical properties of bovine brain kinesin and identification of the ATP-binding subunit polypeptide.Biochemistry 27, 3409–3416.

    Article  PubMed  CAS  Google Scholar 

  • Bööj S., Goldstein M., Fischer-Colbrie R., and Dahlström A. (1989) Calcitonin gene related peptide and chromogranin A: Presence and intraaxonal transport in lumbar motor neurons in the rat, a comparison with synaptic vesicle antigens in immunohistochemical studies.Neuroscience 30, 479–501.

    Article  PubMed  Google Scholar 

  • Bööj S., Larsson P.-A., Dahllöf A.-G., and Dahlström A. (1986) Axonal transport of synapsin I- and cholinergic synaptic vesicle-like material; further immunohistochemical evidence for transport of axonal cholinergic transmitter vesicles in motor neurons.Acta Physiol. Scand. 128, 155–165.

    PubMed  Google Scholar 

  • Bööj S., Larsson P.-A., and Dahlström A. (1987) Immunocytochemical studies on axonal transport of 10H-antigen- and synapsin I-containing organelles in rat motor axons, inCellular and Molecular Cholinergic Function., Dowdell M. and Hawthorne T., eds., Ellis Horwood Ltd., Chichester, UK and VCH, Weinheim, FRG, pp. 288–296.

    Google Scholar 

  • Brady S. T. (1985) A novel brain ATPase with properties expected for the fast axonal transport motor.Nature 317, 73–75.

    Article  PubMed  CAS  Google Scholar 

  • Brady S. T. (1990) A monoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm.Proc. Natl. Acad. Sci. USA 87, 1061–1065.

    Article  PubMed  CAS  Google Scholar 

  • Brimijoin S. (1975) Stop flow; a new technique for measuring axonal transport, and its application to the transport of dopamine-β-hydroxylase.J. Neurobiol. 6, 379–394.

    Article  PubMed  CAS  Google Scholar 

  • Buckley K. and Kelly R. B. (1985) Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells.J. Cell Biol. 100, 1284–1294.

    Article  PubMed  CAS  Google Scholar 

  • Dahlström A. (1965) Observations on the accumulation of noradrenaline in the proximal and distal parts of peripheral adrenergic nerves after compression.J. Anat. 99, 677–689.

    PubMed  Google Scholar 

  • Dahlström A. and Bööj S. (1988) Rapid axonal transport as a chromatographic process: The use of immunocytochemistry of ligated nerves to investigate the biochemistry of anterogradely versus retrogradely transported organelles.Cell Motil. Cytoskel. 10, 309–320.

    Article  Google Scholar 

  • Dahlström A., Bööj S., Goldstein M., and Larsson P.-A. (1982) Cytofluorimetric scanning: a tool for studying axonal transport in monoaminergic neurons.Brain Res. Bull. 9, 61–68.

    Article  PubMed  Google Scholar 

  • Dahlström A., Bööj S., and Larsson P.-A. (1987) Cytofluorimetric scanning: a technique to study rapid axonal transport of many substances in the same nerve speciment; the study of cholinergic axonal organelles, inAxonal Transport, Smith R. S. and Bisby M. A., eds.,Neurology and Neurobiology 25, Alan R. Liss, New York, pp. 291–310.

    Google Scholar 

  • Dahlström A. and Haggendal J. (1966) Studies on the transport and life-span of amine storage granules in a peripheral adrenergic neuron system.Acta Physiol. Scand. 67, 278–288.

    PubMed  Google Scholar 

  • Dahlström A., Heiwall P.-O., Bööj S., and Dahllöf A. (1978) The influence of supraspinal impulse activity on the intraaxonal transport of acetylcholine, choline acetyltransferase and acetylcholine esterase in rat motor neurons.Acta Physiol. Scand. 103, 308–319.

    PubMed  Google Scholar 

  • Dahlström A., Kling-Petersen T., Bööj S., Lundmark K., and Larsson P.-A. (1989) Quantification of axonally transported material using cytofluorimetric scanning.J. Microscopy 155, 61–80.

    Google Scholar 

  • Dahlström A., Larsson P.-A., Goldstein M., Lundmark K., Dahllöf A.-G., and Bööj S. (1986) Immunocytochemical studies on axonal transport in adrenergic and cholinergic nerves using cytofluorimetric scanning.Med. Biol. 64, 49–56.

    PubMed  Google Scholar 

  • Dahlström A., Pfister K. K., and Brady S. T. (1991) The axonal transport motor “kinesin” is bound to anterogradely transported organelles: quantitative cytofluorimetric studies of fast axonal transport in the rat.Acta Physiol. Scand. 141, 469–476.

    PubMed  Google Scholar 

  • DeCamilli P., Benfenati F., Valtorta F., and Greengard P. (1990) The Synapsins.Ann. Rev. Cell Biol. 6, 433–460.

    Article  CAS  Google Scholar 

  • DeCamilli P., and Greengard P. (1986) Synapsin I: a synaptic vesicle-associated neuronal phosphoprotein.Biochem. Pharmacol. 35, 4349–4357.

    Article  CAS  Google Scholar 

  • DeCamilli P., Harris S. M., Huttner W. B., and Greengard P. (1983) Synapsin I (Protein I), a nerve terminal-specific phosphoprotein. II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in Agarose-embedded synaptosomes.J. Cell Biol. 96, 1355–1373.

    Article  CAS  Google Scholar 

  • Fischer-Colbrie R., Lassmann H., Hagn C., and Winkler H. (1985) Immunological studies on the distribution of chromogranin A and B in endocrine and nervous tissues.Neuroscience 16, 547–555.

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Colbrie R. and Schober M. (1987) Isolation and characterization of chromogranins A, B and C from bovine chromaffin granules and a rat pheochromocytoma.J. Neurochem. 48, 262–270.

    Article  PubMed  CAS  Google Scholar 

  • Fontaine B., Klarsfeld A., Hökfelt T., and Changeux J.-P. (1986) Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes.Neurosci. Lett. 71, 59–65.

    Article  PubMed  CAS  Google Scholar 

  • Gibson S. J., Polak J. M., Bloom S. R., Sabate I. M., Mulderry P. M., Ghatel M. A., McGregor G. P., Morrison J. F. B., Kelly J. S., Evans R. M., and Rosenfeld M. G. (1984) Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species.J. Neurosci. 4, 3101–3111.

    PubMed  CAS  Google Scholar 

  • Goldstein M. (1972) Enzymes involved in the catalysis of catecholamine biosynthesis.Res. Meth. Neurochem. 1, 317–340.

    CAS  Google Scholar 

  • Goldstein M., Fuxe K., and Hökfelt T. (1972) Characterization and tissue localization of catecholamine synthesizing enzymes.Pharm. Rev. 24, 298–309.

    Google Scholar 

  • Harmar A., Schofield J. G., and Keen P. (1981) Substance P biosynthesis in dorsal root ganglia: an immunochemical study of35S-methionin and3H-proline incorporation in vitro.Neuroscience 6, 1917–1922.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N., Pfister K. K., Yorifuji H., Wagner M. C., Brady S. T., and Bloom G. S. (1989) Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration.Cell 56, 867–878.

    Article  PubMed  CAS  Google Scholar 

  • Huttner W. B., Schiebler W., Greengard P., and DeCamilli P. (1983) Synapsin I (protein I), a nerve terminal-specific phosphorotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation.J. Cell Biol. 96, 1374–1388.

    Article  PubMed  CAS  Google Scholar 

  • Jahn R., Schiebler W., Ouimet C., and Greengard P. (1985) A 38,000 dalton membrane protein (p38) present in synaptic vesides.Proc. Natl. Acad. Sci. USA 82, 4137–4141.

    Article  PubMed  CAS  Google Scholar 

  • Ju G., Hökfelt T., Brown E., Fahrenkrug J., Fisher J. A., Frey P., Elde R. P., Brown J. C. (1987) Primary sensory neurons of the rat showing calcitonin generelated peptide immunoreactivity and their relation to substance P-, somatostatin-, galanin-, vasoactive intestinal polypeptide- and cholecystokinin-immunoreactive ganglion cells.Cell Tissue Res. 247, 417–431.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H., Hashimoto K., Uchida S., Sakuma J., Takami K., Tohyama M., Izumi F., and Yoshida H. (1987) Calcitonin gene related peptide stimulates adenylate cyclase activity in rat striated muscle.Experientia 43, 314–316.

    Article  PubMed  CAS  Google Scholar 

  • Kristensson K. (1970) Transport of fluorescent protein tracer in peripheral nerve.Acta Neuropathol. 16, 293–300.

    Article  PubMed  CAS  Google Scholar 

  • Kristensson K. and Olsson Y. (1971) Retrograde transport of protein.Brain Res. 29, 363–365.

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov S. A., Vaisberg E. A., Shanina N. A., Magretova N. N., Chernyak V. Y., and Gelfand V. I. (1988) The quaternary structure of bovine brain kinesin.EMBO J. 7, 353–356.

    PubMed  CAS  Google Scholar 

  • Larsson P.-A., Bööj S., Lundmark K., Goldstein M., and Dahlström A. (1986) Reserpine-induced effects in the adrenergic neuron as studied with cytofluorimetric scanning.Brain Res. Bull. 16, 63–74.

    Article  PubMed  CAS  Google Scholar 

  • Larsson P.-A., Bööj S., Lundmark K., Goldstein M., and Dahlström A. (1987) Cytofluorimetric scanning studies on axonal transport in reserpinized adrenergic nerves.Exp. Brain Res. 16, 282–287.

    Google Scholar 

  • Larsson P.-A., Goldstein M., and Dahlström A. (1984) A new methodological approach for studying axonal transport.J. Histochem. Cytochem. 32, 7–16.

    PubMed  CAS  Google Scholar 

  • Lasek R. (1967) Bidirectional transport of radioactively labeled axoplasmic compoments.Nature,216, 1212–1214.

    Article  PubMed  CAS  Google Scholar 

  • Lasek R. (1968) Axoplasmic transport in cat dorsal root ganglia as studied with [3H]L-leucine.Brain Res. 7, 360–377.

    Article  PubMed  CAS  Google Scholar 

  • Lassman H., Hagn C., Fischer-Colbrie R., and Winkler H. (1986) Presence of chromogranin A, B and C in bovine endocrine and nervous tissues: a comparative immunohistochemical study.Histochem. J. 18, 380–386.

    Article  Google Scholar 

  • Laufer R. and Changeux J.-P. (1987) Calcitonin gene-related peptide elevates cyclic AMP levels in chick skeletal muscle: possible neurotrophic role for a coexisting neuronal messenger.EMBO J. 6, 901–906.

    PubMed  CAS  Google Scholar 

  • LaVail J. H. and LaVail M. M. (1972) Retrograde axonal transport in the central nervous system.Science 176, 1416, 1417.

    Article  PubMed  CAS  Google Scholar 

  • Lee Y., Takami K., Kawai Y., Girgis S., Hillyard C. J., MacIntyre I., Emson P. C., and Tohyama M. (1985) Coexistence of calcitonin gene-related peptide and substance P-like peptide in singe cells of the trigeminal ganglion of the rat: immunohistochemical analysis.Brain Res. 330, 194–196.

    Article  PubMed  CAS  Google Scholar 

  • Li J.-Y. and Dahlström A. (1992) Development of calcitonin gene related peptide (CGRP), chromogranin A, and synaptic vesicle markers in rat motor endplates, studied using immunofluorescence and confocal laser scanning.Muscle and Nerve (in press).

  • Lubinska L. (1959) Region of transition between preserved and regenerating parts of myelinated nerve fibers.J. Comp. Neurol. 113, 315–335.

    Article  PubMed  CAS  Google Scholar 

  • Lubinska L. (1964) Axoplasmic streaming in normal and regenerating nerve fibers.Prog. Brain Res. 13, 1–71.

    PubMed  CAS  Google Scholar 

  • Lundberg J. M., Fahrenkrug J., and Brimijoin S. (1981) Characteristics of axonal transport of vasoactive intestinal peptide in the nerve cell in the cat.Acta Physiol. Scand. 112, 427–436.

    PubMed  CAS  Google Scholar 

  • Matteoli M., Balbi S., Sala C., Chini B., Cimino M., Vitadello M., and Fumagalli G. (1990) Developmentally regulated expression of calcitonin generelated peptide at mammalian neuromuscular junction.J. Molec. Neurosci. 2, 175–184.

    PubMed  CAS  Google Scholar 

  • Navone F., Jahn R., Greengard P., and DeCamilli P. (1986) Protein p38, such as synapsin I, is present in all nerve terminals and is selectively associated with small synaptic vesicles.J. Cell Biol. 103, 2511–2527.

    Article  PubMed  CAS  Google Scholar 

  • Navone F, Greengard P., and DeCamilli P. (1984) Synapsin I in nerve terminals; selective association with small synaptic vesicles.Science 226, 1209–1211.

    Article  PubMed  CAS  Google Scholar 

  • Nestler E. J. and Greengard P. (1986) Synapsin I: a review of its distribution and biological regulation.Prog. Brain Res. 69, 323–339.

    PubMed  CAS  Google Scholar 

  • Neuman B., Wiedermann C. J., Fischer-Colbrie R., Schober M., Sperk G., and Winkler H. (1984) Biochemical and functional properties of large and small dense-core vesicles in sympathetic nerves of rat and ox vas deferens.Neuroscience 13, 921–931.

    Article  PubMed  CAS  Google Scholar 

  • New H. V. and Mudge A. W. (1986) Calcitonin generelated peptide regulates muscle acetylcholine receptor synthesis.Nature 323, 809–811.

    Article  PubMed  CAS  Google Scholar 

  • Ochs S (1966) Axoplasmic flow in neurons, inMacromolecules and Behaviour, chapter 3 Gaito J., ed., Appleton-Century-Crofts, New York, pp. 20,39.

    Google Scholar 

  • Ochs S., Sabri M. I., and Johnsson J. (1969) Fast transport system of material in mammalian nerve fibers.Science 163, 686–687.

    Article  PubMed  CAS  Google Scholar 

  • O'Connor D. T. and Frigon R. P. (1984) Chromogranin A, the major catecholamine storage vesicle soluble protein.J. Biol. Chem. 259, 3237–3247.

    PubMed  Google Scholar 

  • Paschal B. M., Shpetner H. S., and Vallee R. B. (1987) MAP1C is a microtubuleavtivated ATPase which translocates microtubules in vitro and has dyneinlike properties.J. Cell Biol. 105, 1273–1282.

    Article  PubMed  CAS  Google Scholar 

  • Petrucci T. C., Macioce P., and Paggi P. (1991) Axonal transport kinetics and posttranslational modification of synapsin I in mouse retinal ganglion cells.J. Neurosci. 11, 2938–2946.

    PubMed  CAS  Google Scholar 

  • Petrucci T. C. and Morrow J. S. (1987) Synapsin I: an actin bundling protein under phosphorylation control.J. Cell Biol. 105, 1355–1363.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer S. R. and Kelly R. B. (1985) The subpopulation of brain coated vesicles that carriers synaptic vesicle proteins contains two unique polypeptides.Cell 40, 949–957.

    Article  Google Scholar 

  • Pfister K. K., Wagner M. C., Stenoien D. L., Brady S. T., and Bloom G. S. (1989) Monoclonal antibodies to kinesin heavy and light chains stain vesicle-like structures, but not microtubules, in cultured cells.J. Cell Biol. 108, 1453–1463.

    Article  PubMed  CAS  Google Scholar 

  • Schiebler W., Hahn R., Doucet J.-P., Rothlein J., and Greengard P. (1986) Characterization of synapsin I binding to small synaptic vesicles.J. Biol. Chem. 261, 8383–8390.

    PubMed  CAS  Google Scholar 

  • Scott, F. H. (1906) On the relation of nerve cells to fatigue of their nerve fibers.J. Physiol. (Lond.) 34, 145–162.

    CAS  Google Scholar 

  • Skene J. H. P., Jacobson R. D., Snipes G. J., McGire C. B., Norden J. J., and Freeman J. A. (1986) A protein induced during nerve growth (GAP-43) is a major component of growth cone membranes.Science 322, 783–785.

    Article  Google Scholar 

  • Smith R. S. (1980) The short term accumulation of axonally transported organelles in the region of localized lesions of single myelated axons.J. Neurocytol. 9, 39–65.

    Article  PubMed  CAS  Google Scholar 

  • Smith R. S. (1987) Control of the direction of rapid axonal transport in the vertebrates, inAxonal Transport, Smith R. S. and Bisby M. A., eds., Alan R. Liss, New York, pp. 139–154.

    Google Scholar 

  • Smith R. S. and Snyder R. E. (1991) Reversal of rapid transport at a lesion; leupeptin inhibits reversed protein transport but does not inhibit reversed organelle transport.Brain Res. 552, 215–227.

    Article  PubMed  CAS  Google Scholar 

  • Smith R. S. and Snyder R. E. (1992) Relationship between the rapid axonal transport of newly synthesised protein and membraneous organelles, inAxonal Transport and the Cytoskeleton, Austin L., Brady, S., Dahlström A., and Hammerschlag R., eds.,Mol. Neurobiol. 6, 283–298.

    Google Scholar 

  • Somogyi P., Hodgson A. J., DePotter R. W., Fischer-Colbrie R., Schober M., Winkler H., and Chubb I. W. (1984) Chromogranin immunoreactivity in the central nervous system. Immunochemical characterization, distribution and relationship catecholamine and enkephalin pathways.Brain Res. Rev. 8, 193–230.

    Article  CAS  Google Scholar 

  • Südhof T. C., Czernik A. J., Kao H.-T., Takei K., Johnston P. A., Horiuchi A., Kanazir S. D., Wagner M. A., Perin M. S., DeCamilli P., and Greengard P. (1989) Synapsins: Mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins.Science 245, 1474–1480.

    Article  PubMed  Google Scholar 

  • Takami K., Hashimoto K., Uchida S., Tohyama M., and Yoshida H. (1986) Effect of calcitonin gene-related peptide on the cyclic AMP level of isolated mouse diaphragm.Japan. J. Pharmacol. 42, 345–350.

    Article  CAS  Google Scholar 

  • Tetzlaff, W., Zwiers H., Lederis, K., Cassar, L., and Bisby, B. A. (1989) Axonal transport and localization of B-50/GAP-43-like immunoreactivity in regenerating sciatic and facial nerves of the rat.J. Neurosci. 9, 1303–1313.

    PubMed  CAS  Google Scholar 

  • Thiel G., Südhof T. C., and Greengard P. (1990). Synapsin II. Mapping of a domain in the NH2 terminal region which binds to small synaptic vesicles.J. Biol. Chem. 265, 16,527–16,533.

    CAS  Google Scholar 

  • Tsukita S. and Ishikawa H. (1980) The movement of membraneous organelles in axons. Electronmicroscopic identification of anterogradely and retrogradely transported organelles.,J. Cell Biol. 84, 513–530.

    Article  PubMed  CAS  Google Scholar 

  • Vale R., Reese T., and Sheetz M. (1985) Identification of a novel force generating protein, kinesin, involved in microtubule based motility.Cell 42, 39–50.

    Article  PubMed  CAS  Google Scholar 

  • Vale R., Schnapp B., Mitchison T., Steuer E., Reese T., and Sheetz M. (1985) Different axoplasmic proteins generate movement in different directions along microtubules in vitro.Cell 43, 623–632.

    Article  PubMed  CAS  Google Scholar 

  • Vale R., Reese T., and Sheetz M. (1985) Identification of a novel force generating protein, kinesin, involved in microtubule based motility.Cell 42, 39–50.

    Article  PubMed  CAS  Google Scholar 

  • Vallee R. B. and Shpetner H. S. (1989) The role of dynein in retrograde axonal transport.TINS 12, 66–70.

    PubMed  CAS  Google Scholar 

  • Volknandt W., Schober M., Fischer-Colbrie R., Zimmermann H., and Winkler H. (1987) Cholinergic terminals in the rat diaphragm are chromogranin A immunoreactive.Neurosci. Lett. 81, 241–244.

    Article  PubMed  CAS  Google Scholar 

  • Wagner M. C., Pfister K. K., Bloom G. S., and Brady S. T. (1989) Copurification of kinesin polypeptides with microtubule stimulated Mg-ATPase activity and kinetic analysis of enzymatic properties.Cell Motil. Cytoskel. 12, 195–215.

    Article  CAS  Google Scholar 

  • White J. G., Amos, W. B., and Fordham M. (1987) An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy.J. Cell Biol. 105, 41–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahlström, A.B., Czernik, A.J. & Li, JY. Organelles in fast axonal transport. Mol Neurobiol 6, 157–177 (1992). https://doi.org/10.1007/BF02780550

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02780550

Index Entries

Navigation