Skip to main content
Log in

State of the art of wide-bandgap semiconductor nuclear radiation detectors

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

The leading materials which operate as room temperature nuclear radiation detectors are HgI2, CdTe, and Cd1−x Zn x Te (0.05>x>0.25). However, additional materials have also been developed, such as semi-insulating GaAs and PbI2. A comparison of the charge transport properties of all these materials will be made, followed by a discussion of each of the materials separately. Crystal growth methods of spectrometer-grade materials will be mentioned, and defects which limit their performance will be discussed. Nuclear spectra measurements with detectors fabricated from these materials, for low X-ray energies as well as for high-energy gamma-rays, will be shown. Polarization effects which occur in some detectors such as HgI2 will also be discussed. Correlation between crystalline perfection and detector performance will be shown. Results of quantitative chemical analysis of various detector materials and problems encountered in determining accurate values ofx in Cd1−x Zn x Te and its homogeneity in the bulk will be presented. Finally, the present state of the art and developments for the near future will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Squillante M. R., Zhang J., Zhou C., Bennet P. andMoy L., inSemiconductors for Room-Temperature Radiation Detector Applications, edited byR. B. James, T. E. Schlesinger, P. Siffert andL. Franks,Material Res. Soc. Symp. Proceedings, Pittsburgh, 1993, Vol.302, pp. 319–328.

  2. Schieber M., Hermon H. andRoth M., inSemiconductors for Room-Temperature Radiation Detector Applications, edited byR. B. James, T. E. Schlesinger, P. Siffert andL. Franks,Material Res. Soc. Symp. Proceedings, Pittsburgh, 1993, Vol.302, pp. 347–355.

  3. Schlesinger T. E. andJames R. B. (Editors),Semiconductors for Room-Temperature Nuclear Detector Applications, Semiconductors and Semimetals Series, Vol.43 (Academic Press, New York, N.Y.) 1995.

    Google Scholar 

  4. Schieber M., Roth M. andSchnepple W. F.,J. Cryst. Growth,65 (1983) 353.

    Article  ADS  Google Scholar 

  5. Gerrish V. M., inSemiconductors for Room-Temperature Radiation Detector Applications, edited byR. B. James, T. E. Schlesinger, P. Siffert andL. Franks,Material Res. Soc. Symp. Proceedings, Pittsburgh, 1993, Vol.302, pp. 129–140.

  6. Schieber M., Roth M., James R. B., Yao W. andGoorsky M.,J. Cryst. Growth,146 (1995) 15.

    Article  ADS  Google Scholar 

  7. James R. B., Bao X. J., Schlesinger T. E., Cheng A. Y. andGoorsky M., inSemiconductors for Room-Temperature Radiation Detector Applications, edited byR. B. James, T. E. Schlesinger, P. Siffert andL. Franks,Material Res. Soc. Symp. Proceedings, Pittsburgh, 1993, Vol.302, pp. 103–114.

  8. Schieber M., James R. B. andSchlesinger T. E.,Summary and remaining issues for room temperature radiation spectrometer, in ref. [3], pp. 561–583.

    Google Scholar 

  9. Butler, J. F., Lingren C. L. andDoty F. P.,IEEE Trans. Nucl. Phys.,39 (1992) 605.

    Article  ADS  Google Scholar 

  10. James R. B., Schlesinger T. E., Lund J. andSchieber M.,Cd 1−xZnx Te Spectrometers for gamma and X-ray applications, in ref. [3], pp. 335–381.

    Google Scholar 

  11. Ryan R. D. andEberhardt J. E.,Solid State Electron.,15 (1972) 865.

    Article  ADS  Google Scholar 

  12. McGregor D. S. andKammeraad J. E.,Gallium arsenide radiation detectors and spectrometers, in ref. [3], pp. 383–442.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schieber, M., James, R.B., Lund, J.C. et al. State of the art of wide-bandgap semiconductor nuclear radiation detectors. Nuov Cim A 109, 1253–1260 (1996). https://doi.org/10.1007/BF02773511

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02773511

PACS 07.77

PACS 29.30.Kv

PACS 29.40.Wk

PACS 01.30.Cc

Navigation