Skip to main content
Log in

Molecular correlates of neuronal specificity in the developing insect nervous system

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The development of the nervous system in insects, as in most other higher animals, is characterized by the high degree of precision and specificity with which synaptic connectivity is established. Multiple molecular mechanisms are involved in this process. In insects a number of experimental methods and model systems can be used to analyze these mechanisms, and the modular organization of the insect nervous system facilitates this analysis considerably. Well characterized molecular elements involved in axogenesis are the cell-cell adhesion molecules that underlie selective fasciculation. These are cell-surface molecules that are expressed in a regional and dynamic manner on developing axon fascicles. Secreted molecules also appear to be involved in directing axonal navigation. Nonneuronal cells, such as glia, provide cellular and noncellular substrates that are important pathway cues for neuronal outgrowth. Once outgrowing processes reach their general target regions they make synapses with the appropriate postsynaptic cells. The molecular mechanisms that allow growth cones to recognize their correct target cells are essential for neuronal specificity and are being analyzed in neuromuscular and brain interneuron systems of insects. Candidate synaptic recognition molecules with remarkable and highly restricted expression patterns in the developing nervous system have recently been discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball E. E., Ho R. K., and Goodman C. S. (1985) Development of neuromuscular specificity in the grasshopper embryo: guidance of motoneuron growth cones by muscle pioneers.J. Neurosci. 5, 1808–1819.

    PubMed  CAS  Google Scholar 

  • Bastiani M. J. and Goodman C. S. (1986) Guidance of neuronal growth cones in the grasshopper embryo. III. Recognition of specific glial pathways.J. Neurosci. 6, 3542–3551.

    PubMed  CAS  Google Scholar 

  • Bastiani M. J., Du Lac S., and Goodman C. S. (1986) Guidance of neuronal growth cones in the grass-hopper embryo. I. Recognition of a specific axonal pathway by the pCC neuron.J. Neurosci. 6, 3518–3531.

    PubMed  CAS  Google Scholar 

  • Bastiani M. J., Harrelson A. L., Snow P. M., and Goodman C. S. (1987) Expression of fasciclin I and II glycoproteins on subsets of axon pathways during neuronal development in the grasshopper.Cell 48, 745–755.

    PubMed  CAS  Google Scholar 

  • Bate M. (1976) Pioneer neurons in an insect embryo.Nature 260, 54–56.

    PubMed  CAS  Google Scholar 

  • Bate M. (1978) Development of sensory systems in arthropods, inHandbook of Sensory Physiology (Jacobson M., ed.), Springer-Verlag, Berlin, pp. 1–53.

    Google Scholar 

  • Bate, M., Goodman C. S., and Spitzer N. C. (1981) Embryonic development of identified neurons: segment-specific differences in the H-cell homologies.J. Neurosci. 1, 103–106.

    PubMed  CAS  Google Scholar 

  • Bellen H. J., Wilson C., and Gehring W. J. (1990) Dissecting the complexity of the nervous system by enhancer detection.Bioessays 12, 199–204.

    PubMed  CAS  Google Scholar 

  • Bentley D. H. and Keshishian H. (1982) Pathfinding by peripheral pioneer neurons in grasshoppers.Science 218, 1082–1088.

    PubMed  Google Scholar 

  • Berlot J. and Goodman C. S. (1984) Guidance of peripheral pioneer neurons in the grasshopper: adhesive hierarchy of epithelial and neuronal surfaces.Science 223, 493–496.

    PubMed  Google Scholar 

  • Bieber A. J., Snow P. M., Hortsch M., Patel N. H., Jacobs J. R., Traquina Z., Schilling J., and Goodman C. S. (1989)Drosophila neuroglian: a member of the immmunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1.Cell 59, 447–460.

    PubMed  CAS  Google Scholar 

  • Blair S. S., Murray M. A., and Palka J. (1987) The guidance of axons from transplanted neurons through aneuralDrosophila wings.J. Neurosci. 7, 4164–4175.

    Google Scholar 

  • Boschert U., Ramos R. G. P., Tix S., Technau G. M., and Fischbach K. F. (1990) Genetic and developmental analysis ofirreC, a genetic function required for optic chiasm formation inDrosophila.J. Neurogenet. 6, 153–171.

    PubMed  CAS  Google Scholar 

  • Boyan G. S., Therianos S., and Reichert H. (1993a) Establishment of a primary scaffold of fiber pathways in the embryonic brain of the grass-hopper.Neurosci. Abstr. 19, 26.5.

    Google Scholar 

  • Boyan G. S., Williams J. L. D., Therianos S., and Reichert H. (1993b) Establishment of an axonal scaffold in the embryonic brain of the grasshopperSchistocerca gregaria: a single cell analysis of early brain development in insects. (submitted).

  • Brand A. H. and Perrimon N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes.Development 118, 401–415.

    PubMed  CAS  Google Scholar 

  • Broadie K S. and Bate M. (1993) Development of the embryonic neuromuscular synapse ofDrosophila melanogaster.J. Neurosci. 13, 144–166.

    PubMed  CAS  Google Scholar 

  • Burrows M. (1975) Monosynaptic connexions between wing stretch receptors and flight motor neurons of the locust.J. Exp. Biol. 62, 189–219.

    PubMed  CAS  Google Scholar 

  • Cabrera C. V. (1992) The generation of cell diversity during early neurogenesis inDrosophila.Development 115, 893–901.

    PubMed  CAS  Google Scholar 

  • Campos A. R., Fischbach K. R., and Steller H. (1992) Survival of the photoreceptor neurons in the compound eye ofDrosophila depends on connections with the optic ganglia.Development 114, 355–366.

    PubMed  CAS  Google Scholar 

  • Campos-Ortega J. A. and Knust E. (1990) Genetic mechanisms in early neurogenesis ofDrosophila melanogaster.Ann. Rev. Genet. 24, 387–407.

    PubMed  CAS  Google Scholar 

  • Carpenter E. M. and Bastiani M. J. (1991) Developmental expression of REGA-1, a regionally expressed glial antigen in the central nervous system of grasshopper embryos.J. Neurosci. 11, 277–286.

    PubMed  CAS  Google Scholar 

  • Cash S., Chiba A., and Keshishian H. (1992) Alternate neuromuscular target selection following the loss of single muscle fiber inDrosophila.J. Neurosci. 12, 2051–2064.

    PubMed  CAS  Google Scholar 

  • Caudy M. and Bentley D. (1986) Pioneer growth cone steering along a series of neuronal and nonneuronal cues of different affinities.J. Neurosci. 6, 1781–1795.

    PubMed  CAS  Google Scholar 

  • Chiba A., Hing H., Cash S., and Keshishian H. (1993) Growth cone choices ofDrosophila motoneurons in response to muscle fiber mismatch.J. Neurosci. 13, 714–732.

    PubMed  CAS  Google Scholar 

  • Chiba A., Shepherd D., and Murphey R. K. (1988) Synaptic rearrangement during postembryonic development in the cricket.Science 240, 901–905.

    PubMed  CAS  Google Scholar 

  • Condic M. L. and Bentley D. (1989) Pioneer neuron pathfinding from normal and ectopic locations in vivo after removal of the basal lamina.Neuron 3, 427–439.

    PubMed  CAS  Google Scholar 

  • Crews S. T., Thomas J. B., and Goodman C. S. (1988) TheDrosophila single-minded gene encodes a nuclear protein with sequence similarity to the per gene product.Cell 52, 143–151.

    PubMed  CAS  Google Scholar 

  • Datta S., Stark K., and Kankel D. R. (1993) Enhancer detector analysis of the extent of genomic involvement in nervous system development inDrosophila melanogaster.J. Neurobiol. 6, 824–841.

    Google Scholar 

  • Dodd J. and Jessel T. M. (1988) Axon guidance and the patterning of neuronal projections in vertebrates.Science 242, 692–699.

    PubMed  CAS  Google Scholar 

  • Edwards J. S. (1977) One organism, several brains: evolution and the development of the insect central nervous system.Ann. NY Acad. Sci. 299, 59–71.

    Google Scholar 

  • Edwards J. S. and Chen S. W. (1979) Embryonic development of an insect sensory system, the abdominal cerci ofAcheta domesticus.Roux Arch. Dev. Biol. 186, 151–178.

    Google Scholar 

  • Farrel S. and Kuhlenbeck H. (1964) Preliminary computation of the number of cellular elements in some insect brains.Anat. Rec. 148, 369,370.

    Google Scholar 

  • Gasser M. and Reichert H. (1993) Expression of TERM-1 in the compound eye of the grasshopperSchistocerca gregaria. (submitted).

  • Ghysen A. (1978) Sensory axons recognize defined pathways inDrosophila central nervous system.Nature 274, 869–872.

    Google Scholar 

  • Ghysen A. and Dambly-Chaudiere C. (1989) Genesis of theDrosophila peripheral nervous system.Trends Genet. 5, 251–255.

    PubMed  CAS  Google Scholar 

  • Ghysen A., Dambly-Chaudiere C., Aceves E., Jan L. Y., and Jan Y. N. (1986) Sensory neurons and peripheral pathways inDrosophila embryos.Roux Arch. Dev. Biol. 195, 281–289.

    Google Scholar 

  • Goodman C. S. and Doe C. Q. (1994) Embryonic development of theDrosophila central nervous system, inThe Development of Drosophila Melanogaster (Bate M. and Martinez-Arias A., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, in press.

    Google Scholar 

  • Goodman C.S. and Shatz C. J. (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity.Cell 72, 77–98.

    PubMed  Google Scholar 

  • Goodman C. S. and Spitzer N. C. (1979) Embryonic development of identified neurones: differentiation from neuroblast to neurone.Nature 280, 208–214.

    PubMed  CAS  Google Scholar 

  • Goodman, C. S., Bastiani M. J., Doe C. Q., Du Lac S., Helfand S. L., Kuwada J. Y., and Thomas J. B. (1984) Cell recognition during neuronal development.Science 225, 1271–1279.

    PubMed  CAS  Google Scholar 

  • Goodman C. S., Bate M., and Spitzer N. C. (1981) Embryonic development of identified neurons: origin and transformation of the H cell.J. Neurosci. 1, 94–102.

    PubMed  CAS  Google Scholar 

  • Goodman C.S., O'Shea M., McCaman R. E., and Spitzer N. C. (1979) Embryonic development of identified neurons: temporal pattern of morphological and biochemical differentiation.Science 204, 219–222.

    Google Scholar 

  • Grenningloh G., Bieber A., Rehm J., Snow P. M., Traquina Z., Hortsch M., Patel N. H., and Goodman C. S. (1990) Molecular genetics of neuronal recognition inDrosophila: evolution and function of immunoglobulin superfamily cell adhesion molecules.Cold Spring Harbor Symp. Quant. Biol. 55, 327–340.

    PubMed  CAS  Google Scholar 

  • Grenningloh G., Rehm E. J., and Goodman C.S. (1991) Genetic analysis of growth cone guidance inDrosophila: fasciclin II functions as a neuronal recognition molecule.Cell 67, 45–57.

    PubMed  CAS  Google Scholar 

  • Halpern M. E., Chiba A., Johansen J., and Keshishian H. (1991) Growth cone behavior underlying the development of stereotypic synaptic connections inDrosophila embryos.J. Neurosci. 11, 3227–3238.

    PubMed  CAS  Google Scholar 

  • Harrelson A. L. and Goodman C. S. (1988) Growth cone guidance in insects: Fasciclin II is a member of the immunoglobulin superfamily.Science 242, 700–708.

    PubMed  CAS  Google Scholar 

  • Hedwig G. and Pearson K. G. (1984) Patterns of synaptic input to identified flight motoneurons in the locust.J. Comp. Physiol. 154, 745–760.

    Google Scholar 

  • Ho, R. K. and Goodman C. S. (1982) Peripheral pathways are pioneered by an array of central and peripheral neurons in grasshopper embryos.Nature 297, 404–406.

    PubMed  CAS  Google Scholar 

  • Hortsch M., Bieber A. J., Patel N. H., and Goodman C. S. (1990) Differential splicing generates a nervous system-specific form ofDrosophila neuroglian.Neuron 4, 697–709.

    PubMed  CAS  Google Scholar 

  • Jacobs J. R., and Goodman C. S. (1989) Embryonic development of axon pathways in theDrosophila CNS: I. A glial scaffold appears before the first growth cones.J. Neurosci. 9, 2402–2411.

    PubMed  CAS  Google Scholar 

  • Jan Y. N. and Jan L. Y. (1990) Genes required for specifying cell fates inDrosophila embryonic sensory nervous system.Trends Neurosci. 13, 493–498.

    PubMed  CAS  Google Scholar 

  • Jessel T. M. (1988) Adhesion molecules and the hierarchy of neural development.Neuron 1, 3–13.

    Google Scholar 

  • Johansen J., Helpern M. E., and Keshishian H. (1989) Axonal guidance and the development of muscle fiber-specific innervation inDrosophila embryos.J. Neurosci. 9, 4318–4332.

    PubMed  CAS  Google Scholar 

  • Klämbt C., Jacobs J. R., and Goodman C. S. (1991) The midline of theDrosophila central nervous system: a model for the genetic analysis of cell fate, cell migration, and growth cone guidance.Cell 64, 801–815.

    PubMed  Google Scholar 

  • Klämbt C. and Goodman C. S. (1991) The diversity and pattern of glia during axon pathway formation in theDrosophila embryo.Glia 4, 205–213.

    PubMed  Google Scholar 

  • Kolodkin A. L., Matthes D. J., O'Connor T. P., Patel N. H., Admon A., Bentley D., and Goodman C. S. (1992) Fasciclin IV: sequence, expression, and function during growth cone guidance in the grasshopper embryo.Neuron 9, 831–845.

    PubMed  CAS  Google Scholar 

  • Krishnan S. N., Frei E., Swain G. P., and Wyman R. J. (1993)Passover: a gene required for synaptic connectivity in the giant fiber system ofDrosophila.Cell 73, 967–977.

    PubMed  CAS  Google Scholar 

  • Kuwada J. Y. and Goodman C. S. (1985) neuronal determination during embryonic development of the grasshopper nervous system.Dev. Biol. 110, 114–126.

    PubMed  CAS  Google Scholar 

  • McAllister L., Goodman C. S., and Zinn K. (1992) Dynamic expression of the cell adhesion molecule fasciclin I during embryonic development inDrosophila.Development 115, 267–276.

    PubMed  CAS  Google Scholar 

  • McMahan U. J. and Wallace B. G. (1989) Molecules in basal lamina that direct the formation of synaptic specializations and neuromuscular junctions.Dev. Neurosci. 11, 227–247.

    PubMed  CAS  Google Scholar 

  • Meier T. and Reichert H. (1990) Embryonic development and evolutionary origin of the orthopteran auditory organs.J. Neurobiol. 21, 592–610.

    PubMed  CAS  Google Scholar 

  • Meier T. and Reichert H. (1991) Serially homologous development of the peripheral nervous system in the mouthparts of the grasshopper.J. Comp. Neurol. 305, 201–214.

    PubMed  CAS  Google Scholar 

  • Meier T., Chabaud F., and Reichert H. (1991) Homologous patterns in the embryonic development of the peripheral nervous system in the grasshopperSchistocerca gregaria and the fruitflyDrosophilia melanogaster.Development 112, 241–253.

    PubMed  CAS  Google Scholar 

  • Meier T., Therianos S., Zacharias D., and Reichert H. (1993) Developmental expression of TERM-1 glycoprotein on growth cones and terminal arbors of individual identified neurons in the grass-hopper.J. Neurosci. 13, 1498–1510.

    PubMed  CAS  Google Scholar 

  • Meyer M. R., Brunner P., and Edwards J. S. (1988) Developmental modulation of a glial cell-associated glycoprotein, 5B12, in an insect,Acheta domesticus.Dev. Biol. 130, 374–391.

    PubMed  CAS  Google Scholar 

  • Meyer M. R., Reddy G. R., and Edwards J. S. (1987) Immunological probes reveal spatial and developmental diversity in insect neuroglia.J. Neurosci. 7, 512–521.

    PubMed  CAS  Google Scholar 

  • Miklos G. L. G. (1993) Molecules and cognition: the latterday lessons of levels, language, andlac.J. Neurobiol. 24, 842–890.

    PubMed  CAS  Google Scholar 

  • Murphey R. K. (1986) Competition and the dynamics of axon arbor growth in the cricket.J. Comp. Neurol. 251, 100–110.

    PubMed  CAS  Google Scholar 

  • Nose A., Mahajan V. B., and Goodman C. S. (1992) Connectin: a homophilic cell adhesion molecule expressed on a subset of muscles and the motoneurons that innervate them inDrosophila.Cell 70, 553–567.

    PubMed  CAS  Google Scholar 

  • O'Connor T. P., Duerr J. S., and Bentley D. (1990) Pioneer growth cone steering decisions mediated by single filopodial contactsin situ.J. Neurosci. 10, 3935–3946.

    PubMed  Google Scholar 

  • Patel N. H., Snow P., and Goodman C. S. (1987) Characterization and cloning of fasciclin III, a glycoprotein expressed on a subset of neurons and axon pathways inDrosophila.Cell 48, 975–988.

    PubMed  CAS  Google Scholar 

  • Patterson P. H. (1992) Process outgrowth and the specificity of connections, inAn Introduction to Molecular Neurobiology (Hall Z. W., ed.), Sinauer, Sunderland, pp. 388–427.

    Google Scholar 

  • Pearson K. G., Boyan G. S., Bastiani M., and Goodman C. S. (1985) Heterogeneous properties of segmentally homologous interneurons in the ventral nerve cord of locusts.J. Comp. Neurol. 233, 133–145.

    PubMed  CAS  Google Scholar 

  • Ramos R. G. P., Igloi G. L., Lichte B., Baumann U., Maier D., Schneider T., Brandstätter H. J., Fröhlich A., and Fischbach K. F. (1993)The irregular chiasm C—roughest locus ofDrosophila, which affects axonal projections and programmed cell death encodes a novel immunoglobulin-like protein.Genes Dev., in press.

  • Raper J. A., Bastiani M. J., and Goodman C. S. (1983a) Pathfinding by neuronal growth cones in grasshopper embryos: I. Divergent choices made by the growth cones of sibling neurons.J. Neurosci. 3, 20–30.

    PubMed  CAS  Google Scholar 

  • Raper J. A., Bastiani M. J., and Goodman C. S. (1983b) Pathfinding by neuronal growth cones in grasshopper embryos: II. Selective fasciculation onto specific axonal pathways.J. Neurosci. 3, 31–41.

    PubMed  CAS  Google Scholar 

  • Raper J. A., Bastiani M. J., and Goodman C. S. (1984) Pathfinding by neuronal growth cones in grasshopper embryos. IV. The effects of ablating the A and P axons upon the behavior of the G growth cone.J. Neurosci. 4, 2329–2345.

    PubMed  CAS  Google Scholar 

  • Reichardt L. R. and Tomaselli K. J. (1991) Extracellular matrix molecules and their receptors: functions in neural development.Ann. Rev. Neurosci. 14, 53–570.

    Google Scholar 

  • Reichert H., Rowell C. H. F., and Griss C. (1985) Course correction circuitry translates feature detection into behaviour action in locusts.Nature (Lond.) 315, 142–144.

    Google Scholar 

  • Rensch B. (1959) Trends toward progress of brains and sense organs.Cold Spring Harbor Symp. Quant. Biol. 24, 291–303.

    PubMed  CAS  Google Scholar 

  • Robertson R. M. and Pearson K. G. (1983) Interneurons in the flight system of the locust: distribution connections and resetting properties.J. Comp. Neurol. 215, 33–50.

    PubMed  CAS  Google Scholar 

  • Robertson R. M., Pearson K. G., and Reichert H. (1982) Flight interneurons in the locust and the origin of insect wings.Science 217, 177–179.

    PubMed  Google Scholar 

  • Rowell C. H. F. (1971) The orthopteran descending movement detector (DMD) neurones: a characterization and review.Z. Vergl. Physiol. 73, 167–194.

    Google Scholar 

  • Rubin G. M. (1988)Drosophila melanogaster as an experimental organism.Science 210, 1453–1459.

    Google Scholar 

  • Sanes J. R. (1989) Extracellular matrix molecules that influence neural development.Ann. Rev. Neurosci. 12, 491–516.

    PubMed  CAS  Google Scholar 

  • Seeger M., Tear G., Ferres-Marco D., and Goodman C. S. (1993) Mutations affecting growth cone guidance inDrosophila: genes necessary for guidance toward or away from the midline.Neuron 10, 409–426.

    PubMed  CAS  Google Scholar 

  • Shankland M. and Bentley D. (1983) Sensory receptor differentiation and axonal pathfinding in the cercus of the grasshopper embryo.Dev. Biol. 97, 468–482.

    PubMed  CAS  Google Scholar 

  • Shaw S. R. (1989) The retina-lamina pathway in insects, particularly diptera, viewed from an evolutionary perspective, inFacets of Vision (Stavenga D. G. and Hardie R. C., eds.), Springer-Verlag, Berlin, pp. 186–212.

    Google Scholar 

  • Siegler M. V. S. and Pousman C. A. (1990a) Motor neurons of grasshopper metathoracic ganglion occur in stereotypic anatomical groups.J. Comp. Neurol. 297, 297–312.

    Google Scholar 

  • Siegler M. V. S. and Pousman C. A. (1990b) Distribution of motor neurons into anatomical groups in the grasshopper metathoracic ganglion.J. Comp. Neurol. 297, 313–327.

    PubMed  CAS  Google Scholar 

  • Sink H. and Whitington P. (1991a) Pathfinding in the central nervous system and periphery by identified embryonicDrosophila motor axons.Development 112, 307–316.

    PubMed  CAS  Google Scholar 

  • Sink H. and Whitington P. (1991b) Early ablation of target muscles modulates the arborisation pattern of an identified embryonicDrosophila motor axon.Development 113, 701–707.

    PubMed  CAS  Google Scholar 

  • Snow P. M., Bieber A. J., and Goodman C. S. (1989) Fasciclin III: a novel homophilic adhesion molecule inDrosophila.Cell 59, 313–323.

    PubMed  CAS  Google Scholar 

  • Sperry R. W. (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections.Proc. Natl. Acad. Sci. USA 50, 703–710.

    PubMed  CAS  Google Scholar 

  • Steller H., Fischbach K. F., and Rubin G. M. (1987)Disconnected: a locus required for neuronal pathway formation in the visual system ofDrosophila.Cell 50, 1139–1153.

    PubMed  CAS  Google Scholar 

  • Strausfeld N.J. (1976)Atlas of an Insect Brain. Springer-Verlag, Berlin.

    Google Scholar 

  • Taghert P. H. and Goodman C. S. (1984) Cell determination and differentiation of identified serotonin-containing neurons in the grasshopper embryo.J. Neurosci. 4, 989–1000.

    PubMed  CAS  Google Scholar 

  • Taghert P., Bastiani M., Ho R. K., and Goodman C. S. (1982) Guidance of pioneer growth cones: filopodial contacts and coupling revealed with an antibody to Lucifer Yellow.Dev. Biol. 94, 391–399.

    PubMed  CAS  Google Scholar 

  • Therianos S., Boyan G. S., Williams J. L. D., and Reichert H. (1993) Axogenesis in the insect brain: common mechanisms of axon tract formation in the embryonic brains ofDrosophila and grasshopper. (submitted).

  • Thomas J. B., Bastiani M. J., Bate M., and Goodman C. S. (1984) From grasshopper toDrosophila: a common plan for neuronal development.Nature 310, 203–207.

    PubMed  CAS  Google Scholar 

  • Thomas J. B., Crews S. T., and Goodman C. S. (1988) Molecular genetics of thesingle-minded locus: a gene involved in the development of theDrosophila nervous system.Cell 52, 133–141.

    PubMed  CAS  Google Scholar 

  • Tyrer N. M. and Altman J. S. (1974) Motor and sensory flight neurons in a locust demonstrated using cobalt chloride.J. Comp. Neurol. 157, 117–138.

    PubMed  CAS  Google Scholar 

  • Van Vactor D., Sink H., Fambrough D., Tsoo R., and Goodman C. S. (1993) Genes that control neuromuscular specificity inDrosophila.Cell 73, 1137–1153.

    PubMed  CAS  Google Scholar 

  • Wang L. and Denburg J. L. (1992) A role for proteoglycans in the guidance of a subset of pioneer axons in cultured embryos of the cockroach.Neuron 8, 701–714.

    PubMed  CAS  Google Scholar 

  • Wiggelsworth V. B. (1953) The origin of sensory neurons in an insect,Rhodinus prolixus (Hemiptera).Quant. J. Microsc. Sci. 94, 113–124.

    Google Scholar 

  • Wilson J. A., Phillips C. E., Adams M. W., and Huber F. (1982) Structural comparison of a homologous neuron in Gryllid and Acridid insects.J. Neurobiol. 13, 459–468.

    PubMed  CAS  Google Scholar 

  • Zacharias D., Williams J. L. D., Meier T., and Reichert H. (1993) Neurogenesis in the insect brain: cellular identification and molecular characterization of brain neuroblasts in the grasshopper embryo.Development 118, 941–955.

    CAS  Google Scholar 

  • Zinn K., McAllister L., and Goodman C. S. (1988) Sequence and expression of fasciclin I in grasshopper andDrosophila.Cell 53, 577–587.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichert, H. Molecular correlates of neuronal specificity in the developing insect nervous system. Mol Neurobiol 7, 349–362 (1993). https://doi.org/10.1007/BF02769182

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02769182

Index Entries

Navigation