Skip to main content
Log in

Fluorescence lifetime imaging of oxygen in living cells

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The usefulness of the fluorescent probe ruthenium tris(2,2′-dipyridyl) dichloride hydrate (RTDP) for the quantitative imaging of oxygen in single cells was investigated utilizing fluorescence lifetime imaging. The results indicate that the fluorescence behavior of RTDP in the presence of oxygen can be described by the Stem-Volmer equation. This shows that fluorescence quenching by oxygen is a dynamic quenching process. In addition, it was demonstrated that the fluorescence lifetime of RTDP is insensitive to pH, ion concentration, and cellular contents. This implies that a simple calibration procedure in buffers can be used to quantify oxygen concentrations within cells. First fluorescence imaging experiments on J774 macrophages show a nonuniform fluorescence intensity and a uniform fluorescence lifetime image. This indicates that the RTDP is heterogeneously partitioned throughout the cells, while the oxygen concentration is constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroneis and H. J. Matsoner (1983)Sensors Actuators 1, 587.

    Google Scholar 

  2. E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon (1991)Anal. Chem. 63, 337–342.

    Article  CAS  Google Scholar 

  3. M. E. Lippitsch, J. Pusterhofer, M. J. P. Leiner, and O. S. Wolfbeis (1988)Anal. Chim. Acta 205, 1–6.

    Article  CAS  Google Scholar 

  4. O. S. Wolfbeis, L. J. Weis, M. J. P. Leiner, and W. E. Ziegler (1988)Anal. Chem. 60, 2028–2030.

    Article  CAS  Google Scholar 

  5. S. B. Bambot, R. Holavanahali, J. R. Lakowicz, G. M. Carter, and G. Rao (1994)Biotech. Bioeng. 43, 1139.

    Article  CAS  Google Scholar 

  6. J. R. Lakowicz (1983)Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Google Scholar 

  7. C. G. Morgan, A. C. Mitchell, and J. G. Murray (1990)Trans. Roy. Microsc. Soc. Micro 90, 463–466.

    Google Scholar 

  8. X. F. Wang, T. Uchida, D. M. Colaman, and S. Minami (1991)Appl. Spectrosc. 45, 360–366.

    Article  CAS  Google Scholar 

  9. J. R. Lakowicz, H. Szmacinski, and K. Nowaczyk (1992)Proc. Natl. Acad. Sci. USA 89, 1271–1275.

    Article  PubMed  CAS  Google Scholar 

  10. E. P. Buurman, R. Sanders, A. Draaijer, H. C. Gerritsen, J. J. F. Van Veen, P. M. Houpt, and Y. K. Levine (1992)Scanning 14, 155–159.

    Google Scholar 

  11. A. Draaijer and P. M. Houpt (1988)Scanning 10, 139–145.

    Google Scholar 

  12. R. J. Woods, S. Scypinski, L. J. Cline Love, and H. A. Ashworth (1984)Anal. Chem. 56, 1395–1400.

    Article  PubMed  CAS  Google Scholar 

  13. C. Ince, R. E. Beekman, and G. Verschagen (1990)J. Immunol. Methods 128, 227–234.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerritsen, H.C., Sanders, R., Draaijer, A. et al. Fluorescence lifetime imaging of oxygen in living cells. J Fluoresc 7, 11–15 (1997). https://doi.org/10.1007/BF02764572

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02764572

Key Words

Navigation