Skip to main content
Log in

Studies of the oxovanadium-organophosphonate system: Hydrothermal synthesis and crystal structure of the mixed valence cluster [V5O9(PhPO3)3(PhPO3H)2]2− and a comparison to the structure of the fully oxidized parent cluster [V5O7(OCH3)2(PhPO3)5]1−

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The room temperature reaction of (Bu4N)3V5O14 with PhPO3H2 in methanol yields the pentanuclear V(V) cluster (Bu4N)[V5O7(OCH3)2(PhPO3)5]·CH3OH (1·CH3OH). In contrast, the hydrothermal reaction of (Ph4P) [VO2Cl2], PhPO3H2 and (NH4)H2PO4 at 125°C for 96 hr yields the mixed valence V(IV)/V(V) species (Ph4P)2[V5O9(PhPO3)3(PhPO3H)2] (3). While the anions of both 1 and 3 exhibit a pentanuclear core, the structural consequences of 1-electron reduction of the fully oxidized cluster of 1 to produce 3 are quite dramatic, including reduction in coordination numbers at two vanadium sites and protonation of two phosphonate oxygen sites with concomitant structural reorganization. Crystal data: 1, monoclinic P21/n,a=12.167(2) Å,b=23.348(5) Å,c=22.508(5) Å,β=98.49(2)°,V=6323.9(19) Å3,Z=4,D calc=1.558 g cm−3; 3, triclinic,\(P\bar 1\),a=13.478(3) Å,b=14.399(3) Å,c=23.638(5) Å,α=72.53(2)°,β=85.58(2)°,γ=69.88(4)°,V=4107.0(16) Å3,Z=2, Dcalc=1.479 g cm−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Burwell, K. G. Valentine, J. H. Timmermans, and M. E. Thompson (1992).J. Am. Chem. Soc. 114, 4144.

    Article  CAS  Google Scholar 

  2. A. Clearfield (1988).Chem. Rev. 88, 125.

    Article  CAS  Google Scholar 

  3. Y. Zhang and A. Clearfield (1992).Inorg. Chem. 31, 2821, and references therein.

    Article  CAS  Google Scholar 

  4. D. Rong, H.-G. Hong, Y. I. Kim, J. S. Kreuger, J. E. Mayer, and T. E. Mallouk (1990).Coord. Chem. Rev. 97, 237.

    Article  CAS  Google Scholar 

  5. E. T. Clark, P. R. Rudolf, A. E. Martell, and A. Clearfield (1989).Inorg. Chim. Acta 164, 59.

    Article  Google Scholar 

  6. G. Huan, V. W. Day, A. J. Jacobson, and D. P. Goshorn (1991).J. Am. Chem. Soc. 113, 3188.

    Article  CAS  Google Scholar 

  7. G. Huang, A. J. Jacobson, and V. W. Day (1991).Angew. Chem. Int. Ed. Engl. 30, 422.

    Article  Google Scholar 

  8. A. Müller, K. Hovemeier, and R. Rohlfing (1992).Angew. Chem. Int. Ed. Engl. 31, 1192.

    Article  Google Scholar 

  9. A. Müller, K. Hovemeier, E. Krickemeyer, and H. Bögge (1995).Angew. Chem. Int. Éd. Engl. 34, 779.

    Article  Google Scholar 

  10. Y.-D. Chang and J. Zubieta (1996).Inorg. Chim. Acta 245, 177;

    Article  CAS  Google Scholar 

  11. M. I. Khan, Q. Chen, and J. Zubieta (1995).Inorg. Chim. Acta 231, 13.

    Article  Google Scholar 

  12. B. Bujoli, P. Palvadeau, and J. Rouxel (1990).Chem. Mater. 2, 582.

    Article  CAS  Google Scholar 

  13. G. Cao, H. Lee, V. M. Lynch, and T. E. Mallouk (1988).Inorg. Chem. 27, 2781.

    Article  CAS  Google Scholar 

  14. R. Martin, P. J. Squattorito, and A. Clearfield (1989).Inorg. Chim. Acta 155, 7.

    Article  CAS  Google Scholar 

  15. G. Cao and T. E. Mallouk (1991).Inorg. Chem. 30, 1434.

    Article  CAS  Google Scholar 

  16. J. LeBideau, B. Bujoli, A. Jouanneaux, C. Pagen, P. Palvadeau, and J. Rouxel (1993).Inorg. Chem. 32, 4617.

    Article  CAS  Google Scholar 

  17. C. Bhardwaj, H. Hu, and A. Clearfield (1993).Inorg. Chem. 32, 4294.

    Article  CAS  Google Scholar 

  18. D. M. Poojary and A. Clearfield (1995).J. Am. Chem. Soc. 117, and references therein.

  19. G. Cao, V. M. Lynch, J. S. Swinnea, and T. E. Mallouk (1990).Inorg. Chem. 29, 2112.

    Article  CAS  Google Scholar 

  20. G. Alberti, M. Casciola, and R. K. Biswas (1992).Inorg. Chim. Acta 201, 207, and references therein.

    Article  CAS  Google Scholar 

  21. G. Huan, A. J. Jacobson, J. W. Johnson, and E. W. Corcoran, Jr. (1990).Chem. Mater. 2, 91.

    Article  CAS  Google Scholar 

  22. G. Huan, J. W. Johnson, and A. J. Jacobson (1990).Chem. Mater. 2, 719.

    Article  CAS  Google Scholar 

  23. J. L. Snover and M. E. Thompson (1994).J. Am. Chem. Soc. 116, 765.

    Article  CAS  Google Scholar 

  24. C. Y. Ortiz-Avila, C. Bhardwaj, and A. Clearfield (1994).Inorg. Chem. 33, 2499.

    Article  CAS  Google Scholar 

  25. W. T. A. Harrison, L. L. Dvosack, and A. J. Jacobson (1995).Inorg. Chem. 34, 4774.

    Article  CAS  Google Scholar 

  26. J. LeBideau, C. Payen, P. Polvadear, and B. Bujoli (1994).Inorg. Chem. 33, 4885; S. Drumel, P. Janvier, D. Deniaud, and B. Bujoli (1995).J. Chem. Soc. Chem. Commun. 1051; S. Drumel, P. Janvier, P. Barboux, J. Bujoli-Doeuff, and B. Bujoli (1995).Inorg. Chem. 34, 148.

    Article  CAS  Google Scholar 

  27. M. Poojary, D. Grohol, and A. Clearfield (1995).Angew. Chem. Int. Ed. Engl. 34, 1508; M. Poojary, A. Cabeza, M. A. G. Aranda, S. Bruque, and A. Clearfield (1996).35, 1468.

    Article  CAS  Google Scholar 

  28. K. Maeda, J. Akimoto, Y. Kiyozumi, and F. Mizukami (1995).Angew. Chem. Int. Ed. Engl. 34, 1199; K. Maeda, J. Akimoto, Y. Kiyozumi, and F. Mizukami (1995).J. Chem. Soc. Chem. Commun. 1033.

    Article  CAS  Google Scholar 

  29. W. T. A. Harrison, L. L. Dussack, and A. J. Jacobson (1996).Inorg. Chem. 35, 1461.

    Article  CAS  Google Scholar 

  30. M. I. Khan and J. Zubieta (1995).Prog. Inorg. Chem. 43, 1.

    Article  CAS  Google Scholar 

  31. M. I. Khan, Y.-S. Lee, C. J. O’Connor, R. S. Haushalter, and J. Zubieta (1994).Inorg. Chem. 33, 3855.

    Article  CAS  Google Scholar 

  32. M. I. Khan, Y.-S. Lee, C. J. O’Connor, R. S. Haushalter, and J. Zubieta (1994).J. Am. Chem. Soc. 116, 4525.

    Article  CAS  Google Scholar 

  33. M. I. Khan, Y.-S. Lee, C. J. O’Connor, R. S. Haushalter, and J. Zubieta (1994).Chem. Mater. 6, 721.

    Article  CAS  Google Scholar 

  34. V. Soghomonian, Q. Chen, R. C. Haushalter, and J. Zubieta (1995).Angew. Chem. Int. Ed. Engl. 34, 223.

    Article  CAS  Google Scholar 

  35. V. Soghomonian, R. Diaz, R. C. Haushalter, C. J. O’Connor, and J. Zubieta (1995).Inorg. Chem. 34, 4460.

    Article  CAS  Google Scholar 

  36. V. Soghomonian, R. C. Haushalter, and J. Zubieta (1995).Chem. Mater. 7, 1648.

    Article  CAS  Google Scholar 

  37. Q. Chen, J. Salta, and J. Zubieta (1993).Inorg. Chem. 32, 4485.

    Article  CAS  Google Scholar 

  38. Q. Chen and J. Zubieta (1994).J. Chem. Soc. Chem. Commun. 2663.

  39. Q. Chen and J. Zubieta (1993).Angew. Chem. Int. Ed. Engl. 32, 261.

    Article  Google Scholar 

  40. J. Salta, Q. Chen, Y.-D. Chang, and J. Zubieta (1994).Angew. Chem. Int. Ed. Engl. 33, 757.

    Article  Google Scholar 

  41. Y.-D. Chang, J. Salta, and J. Zubieta (1994).Angew. Chem. Int. Ed. Engl. 33, 325.

    Article  Google Scholar 

  42. Q. Chen and J. Zubieta (1994).J. Chem. Soc. Chem. Commun. 1635.

  43. M. I. Khan and J. Zubieta (1994).Angew. Chem. Int. Ed. Engl. 33, 760.

    Article  Google Scholar 

  44. J. Salta and J. Zubieta (1996).J. Cluster Sci. 7, 531.

    Article  CAS  Google Scholar 

  45. D. Fenske, A.-F. Shihada, H. Schwab, and K. Dehnicke (1986).Z. Anorg. Allgem. Chem. 471, 140.

    Article  Google Scholar 

  46. V. W. Day, W. G. Klemperer, and O. M. Yaghi (1991).J. Am. Chem. Soc. 111, 4519.

    Google Scholar 

  47. Q. Chen, D. P. Goshorn, C. P. Scholes, X.-L. Tan, and J. Zubieta (1992).J. Am. Chem. Soc. 114, 4667.

    Article  CAS  Google Scholar 

  48. E. L. Muetterties and J. Guggenberger (1974).J. Am. Chem. Soc. 96, 1748.

    Article  CAS  Google Scholar 

  49. I. D. Brown,in M. O’Keefe and A. Mavrotsky (eds.),Structure and Bonding in Crystals (Academic Press, New York, 1981), pp. 1–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salta, J., Zubieta, J. Studies of the oxovanadium-organophosphonate system: Hydrothermal synthesis and crystal structure of the mixed valence cluster [V5O9(PhPO3)3(PhPO3H)2]2− and a comparison to the structure of the fully oxidized parent cluster [V5O7(OCH3)2(PhPO3)5]1− . J Clust Sci 8, 361–380 (1997). https://doi.org/10.1007/BF02764114

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02764114

Key words

Navigation