Skip to main content
Log in

Quantification of the presence and activity of specific microorganisms in nature

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Traditional techniques for assessment of microbial numbers and activity generally lack the specificity required for risk assessment following environmental release of genetically engineered microbial inocula. Immunological and molecular-based techniques, such as DNA probing and genetic tagging, were initially used to determine the presence or absence of microorganisms in environmental samples. Increasingly they are being developed for quantification of populations of specific organisms, either indigenous or introduced, in the environment. In addition, they are being used to quantify the activity of particular organisms or groups of organisms, greatly extending the range of techniques available to the microbial ecologist. This article reviews the use of traditional techniques for the quantification of microbial population size and activity and the application of molecular techniques, including DNA probing, genetic marking, use of fluorescent probes, and quantitative PCR, in combination with advanced cell detection techniques such as confocal laser scanning microscopy and flow cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gustafsson, K. and Jansson, J. K. (1993) Ecological risk assessment of the deliberate release of genetically modified microorganisms.Ambio. 22, 236–242.

    Google Scholar 

  2. Jansson, J. K. (1995) Tracking genetically engineered microorganisms in nature.Curr. Opinion Biotech. 6, 275–283.

    Article  CAS  Google Scholar 

  3. Torsvik, V., Goksøyr, J., and Daae, F. L. (1990) High diversity in DNA of soil bacteria.Appl. Environ. Microbiol. 56, 782–787.

    PubMed  CAS  Google Scholar 

  4. Bloem, J., Veninga, M., and Shepherd, J. (1995) Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis.Appl. Environ. Microbiol. 61, 926–936.

    PubMed  CAS  Google Scholar 

  5. Torrella, F. and Morita, R. Y. (1981) Microcultural study of bacterial size changes and micro colony and ultramicrocolony formation by heterotrophic bacteria in seawater.Appl. Environ. Microbiol. 41, 518–527.

    PubMed  Google Scholar 

  6. Nybroe, O., Christoffersen, K., and Riemann, B. (1992) Survival ofBacillus licheniformis in seawater model-ecosystems.Appl. Environ. Microbiol. 58, 252–259.

    PubMed  Google Scholar 

  7. Schloter, M., Borlinghaus, R., Bode, W., and Hartmann, A. (1993) Direct identification and localization ofAzospirillum in the rhizosphere of wheat using fluorescence-labelled monoclonal antibodies and confocal scanning laser microscopy.Microscopy 171, 173–177.

    Google Scholar 

  8. DeLong, E. F., Wickham, G. S., and Pace, N. R. (1989) Phylogenetic strains: ribosomal RNA-based probes for the identification of single cells.Science 243, 1360–1363.

    Article  PubMed  CAS  Google Scholar 

  9. Manz, W., Szewzyk, U., Ericsson, P., Amann, R., Schieffer, K.-H., and Stenström, T.-A. (1993)In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes.Appl. Environ. Microbiol. 59, 2293–2298.

    PubMed  CAS  Google Scholar 

  10. Assmus, B., Hutzler, P., Kirchhof, G., Amann, R., Lawrence, J. K., and Hartmann, A. (1995)In situ localization ofAzospirillum brasilense in the rhizosphere of wheat with fluorescently labeled rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy.Appl. Environ. Microbiol. 61, 1013–1019.

    PubMed  CAS  Google Scholar 

  11. Amann, K. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., and Stahl, D. A. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations.Appl. Environ. Microbiol. 56, 1919–1925.

    PubMed  CAS  Google Scholar 

  12. Spring, S., Amann, K., Ludwig, W., Schleifer, K.-H., and Petersen, N. (1992) Phylogenetic diversity and identification of nonculturable magnetotactic bacteria.System. Appl. Microbiol. 15, 116–122.

    Google Scholar 

  13. Stephen, J. R., McCaig, A. E., Smith, Z., Prosser, J. I., and Embley, T. M. (1997) Molecular diversity of soil and marine 16S rDNA sequences related to β-subgroup ammonia oxidising bacteria.Appl. Environ. Microbiol., submitted.

  14. Amann, R. I., Ludwig, W., and Schleifer, K. H. (1995) Phylogenetic identification andin situ detection of individual cells without cultivation.Microbiol. Rev. 59, 143–169.

    PubMed  CAS  Google Scholar 

  15. Boye, M., Ahl, T., and Molin, S. (1995) Application of a strain-specific rRNA oligonucleotide probe targetingPseudomonas fluorescens Ag1 in a mesocosm study of bacterial release into the environment.Appl. Environ. Microbiol. 61, 1384–1390.

    PubMed  CAS  Google Scholar 

  16. Hahn, D., Amann, R. I., Ludwig, W., Akkermans, A. D. L., and Schleifer, K.-H. (1992) Detection of micro-organisms in soil afterin situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides.J. Gen. Microbiol. 138, 879–887.

    PubMed  CAS  Google Scholar 

  17. Prosser, J. I. (1994) Molecular marker systems for the detection of genetically modified microorganisms in the environment.Microbiology 140, 5–17.

    PubMed  CAS  Google Scholar 

  18. Jansson, J. K. (1995) Tracking genetically engineered microorganisms in nature.Curr. Opinion Biotech. 6, 275–283.

    Article  CAS  Google Scholar 

  19. Silcock, D., Waterhouse, K. N., Glover, L. A., Prosser, J. I., and Killham, K. (1992) Detection of a single genetically modified bacterial cell in soil by using charge coupled device-enhanced microscopy.Appl. Environ. Microbiol. 58, 2444–2448.

    PubMed  CAS  Google Scholar 

  20. Viles, C. J. and Sieracki, M. E. (1992) Measurement of marine picoplankton cell size using a cooled, charge-coupled device camera with image-analyzed fluorescence microscopy.Appl. Environ. Microbiol. 58, 584–592.

    PubMed  CAS  Google Scholar 

  21. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., and Cormier, M. J. (1992) Primary structure of theAequorea victoria green-fluorescent protein.Gene 111, 229–233.

    Article  PubMed  CAS  Google Scholar 

  22. Chalfie, M., Tu, Y., Euskircher, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression.Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  23. Heim, K., Prasher, D. C., and Tsien, R. Y. (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein.Proc. Natl. Acad. Sci. USA 91, 12,501–12,504.

    Article  CAS  Google Scholar 

  24. Crameri, A., Whitehorn, E. A., Tate, E. and Stemmer, W. P. C. (1996) Improved green fluorescent protem by molecular evolution using DNA shuffling.Nat. Biotech. 14, 315–319.

    Article  CAS  Google Scholar 

  25. Helm, R. and Tsien, K. Y. (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer.Curr. Biol. 6, 178–182.

    Article  Google Scholar 

  26. Tombolini, K., Unge, A., Davey, M. E., de Bruijn, F. J., and Jansson, J. K. (1997) Flow cytometric and microscopic analysis ofgfp-tagged,Pseudomonas fluorescens bacteria.FEMS Microbiol. Ecol. 22, 17–28.

    Article  CAS  Google Scholar 

  27. Caldwell, D. E., Korber, D. R., and Lawrence, J. R., (1992) confocal laser microscopy and digital image analysis in microbial ecology.Adv. Microb. Ecol. 12, 1–67.

    CAS  Google Scholar 

  28. Lawrence, J. R., Korber, D. K., Hoyle, B. D., Costerton, J. W., and Caldwell, D. E. (1991) Optical sectioning of microbial biofilms.J. Bacteriol. 173, 6558–6567.

    PubMed  CAS  Google Scholar 

  29. Ghiorse, W. C., Miller, D. N., Sandoli, R. L., and Siering, P. L. (1996) Applications of laser scanning microscopy for analysis of aquatic microhabitats.Microsc. Res. Tech. 33, 73–86.

    Article  PubMed  CAS  Google Scholar 

  30. Porter, J., Diaper, J., Edwards, C., and Pickup, K. (1995) Direct measurements of natural planktonic bacterial community viability by flow-cytometry.Appl. Environ. Microbiol. 61, 2783–2786.

    PubMed  CAS  Google Scholar 

  31. Page, S. and Burns, K. G. (1991) Flow cytometry as a means of enumerating bacteria introduced into soil.Soil Biol. Biochem. 23, 1025–1028.

    Article  Google Scholar 

  32. Christensen, H., Olsen, R. A., and Bakken, L. K. (1995) Flow cytometric measurements of cell volume and DNA content during culture of indigenous soil bacteria.Microbial. Ecol. 29, 49–62.

    Article  CAS  Google Scholar 

  33. Wallner, G., Erhart, K., and Amann, K (1995) Flow cytometric analysis of activated sludge with rRNA-targeted probes.Appl. Environ. Microbiol. 61, 1859–1866.

    PubMed  CAS  Google Scholar 

  34. Porter, J., Edwards, C., Morgan, J. A. W., and Pickup, R. (1993) Rapid automated separation of specific bacteria from lake water and sewage by flow cytometry and cell sorting.Appl. Environ. Microbiol. 59, 3327–3333.

    PubMed  CAS  Google Scholar 

  35. Roszak, D. B. and Colwell, R. R. (1987) Survival strategies of bacteria in the natural environment.Microbiol. Rev. 51, 365–379.

    PubMed  CAS  Google Scholar 

  36. Drahos, D., Hemming, B. C., and McPherson, S. (1986) Tracking recombinant organisms in the environment: β-galactosidase as a selectable non-antibiotic marker for fluorescent pseudomonads.Bio/Technology 4, 439–444.

    Article  CAS  Google Scholar 

  37. Hofte, M., Mergeay, M., and Verstraete, W. (1990) Marking theRhizopseudomonas strain 7NSK2 with a Mu d(lac) element for ecological studies.Appl. Environ. Microbiol. 56, 1046–1052.

    PubMed  CAS  Google Scholar 

  38. Ryder, M. H., Pankhurst, C. E., Rovira, A. D., Correll, K. L., and Keller, K. M. O. (1994) Detection of introduced bacteria in the rhizosphere using maker genes and DNA probes, inMolecular ecology of the Rhizosphere (O'Gara, F., Dowling, B., and Boesten, B., eds.), VCH Publishers, Weinheim, Germany, pp. 29–47.

    Google Scholar 

  39. Winstanley, C., Morgan, J. A. W., Pickup, R. W., Jones, J. G., and Saunders, J. K. (1989) Differential regulation of Lambda pL and pR promoters by a cI repressor in a broad-host-range thermoregulated plasmid marker system.Appl. Environ. Microbiol. 55, 770–777.

    Google Scholar 

  40. Wipat, A., Wellington, E. M. H., and Saunders, V. A. (1991)Streptomyces marker plasmids for monitoring survival and spread of streptomycetes in soil.Appl. Environ. Microbiol. 57, 3322–3330.

    PubMed  CAS  Google Scholar 

  41. Morgan, J. A. W., Winstanley, C., Pickup, K. W., Jones, J. G., and Saunders, J. K. (1989) Direct phenotypic and genotypic detection of a recombinant pseudomonad population released into lake water.Appl. Environ. Microbiol. 55, 2537–2544.

    PubMed  CAS  Google Scholar 

  42. Grant, F. A., Glover, L. A., Killham, K., and Prosser, J. I. (1991), Luminescence-based viable cell enumeration ofErwinia carotovora in the soil.Soil. Biol. Biochem. 23, 1021–1024.

    Article  CAS  Google Scholar 

  43. Cebolla, A., Vazquez, M. E., and Palomares, A. J. (1995) Expression vectors for the use of eukaryotic luciferases as bacterial markers with different colors of luminescence.Appl. Environ. Microbiol. 61, 660–668.

    PubMed  CAS  Google Scholar 

  44. Thompson, I. P., Lilley, A. K., Ellis, R. J., Bramwell, P. A., and Bailey, M. J. (1995) Survival, colonization and dispersal of genetically modifiedPseudomonas fluorescens SBW25 in the phytosphere of field grown sugar beet.Bio/Technology 13, 1493–1497.

    Article  CAS  Google Scholar 

  45. Cebolla, A., Ruiz-Berraquero, F., and Palomares, A. J. (1993) Stable tagging ofRhizobium meliloti with the firefly luciferase gene for environmental monitoring.Appl. Environ. Microbiol. 59, 2511–2519.

    PubMed  CAS  Google Scholar 

  46. Flemming, C. A., Leung, K. T., Lee, H., Trevors, J. T., and Greer, C. W. (1994) Survival oflux-lac-marked biosurfactant-producingPseudomonas aeruginosa UG2L in soil monitored by nonselective plating and PCR.Appl. Environ. Microbiol. 60, 1606–1616.

    PubMed  CAS  Google Scholar 

  47. Nybroe, O. (1995) Assessment of metabolic-activity of single bacterial-cells—new developments in microcolony and dehydrogenase assaysFEMS Microbiol. Ecol. 17, 77–83.

    CAS  Google Scholar 

  48. Binnerup, S. J., Jensen, D. F., Thordalchristensen, H., and Sorensen, J. (1993) Detection of viable, but non-culturablePseudomonas fluorescens, DF57 in soil using a microcolony epifluorescence technique.FEMS Microbiol. Ecol. 12, 97–105.

    Article  Google Scholar 

  49. Belser, L. W. and Schmidt, E. L. (1978) Diversity in the ammonia oxidizing nitrifier population of a soil.Appl. Environ. Microbiol. 36, 584–588.

    PubMed  Google Scholar 

  50. Fredrickson J. K., Bezdicek, D. F., and Brockman, F. J. (1988) Enumeration of Tn5 mutant bacteria in soil by using a most-probable-number DNA hybridization procedure and antibiotic-resistance.Appl. Environ. Microbiol. 54, 446–453.

    PubMed  CAS  Google Scholar 

  51. Diaper, J. P. and Edwards, C. (1994) Survival ofStaphylococcus aureus in lakewater monitored by flow cytometry.Microbiology 140, 35–42.

    Article  PubMed  CAS  Google Scholar 

  52. Jepras, K. I., Carter, J., Pearson, S. C., Paul, F. E., and Wilkinson, M. J. (1995) Development of a robust flow cytometric assay for determining numbers of viable bacteria.Appl. Environ. Microbiol. 61, 2696–2701.

    PubMed  CAS  Google Scholar 

  53. Webster, J. J., Hampton, G. J., Wilson, J. T., Ghiorse, W. C., and Leach, F. R. (1985) Determination of microbial cell numbers in subsurface samples.Ground Water 23, 17–25.

    Article  CAS  Google Scholar 

  54. Kogure, K., Simidu, U., and Taga, N. (1979) A tentative direct microscopic method for counting living marine bacteria.Can. J Microbiol. 25, 415–420.

    Article  PubMed  CAS  Google Scholar 

  55. Xu, H. S., Roberts, N., Singleton, F. L., Attwell, K. W., Grimes, D. J., and Colwell, K. R. (1982) Survival and viability of nonculturableEscherichia coli andVibrio cholerae in the estuarine and marine environment.Microbial Ecol. 8, 313–323.

    Article  Google Scholar 

  56. Heijnen, C. E., Page, S., and van Elsas, J. D. (1995) Metabolic activity ofFlavobacterium strain P25 during starvation and after introduction into bulk soil and the rhizosphere of wheat.FEMS Microbiol. Ecol. 129–140.

  57. Poulsen, L. K., Ballard, G., and Stahl, D. A. (1993) Use of rRNA fluorescencein situ hybridization for measuring the activity of single cells in young and established biofilms.Appl. Environ. Microbiol. 59, 1354–1360.

    PubMed  CAS  Google Scholar 

  58. Brock, M. L. and Brock, T. D. (1968) The application of microautoradiographic techniques to ecological studies.Mitteilungen der Iunternationale vereinigung fur theoretische und angewandte Limnologie 15, 1–29.

    Google Scholar 

  59. Fliermans, C. B. and Schmidt, E. L. (1975) Autoradiography and immunofluorecence combined for auto ecological study of single cell activity withNitrobacter.Appl. Microbiol. 30, 674–684.

    Google Scholar 

  60. Rattray, E. A. S., Prosser, J. I., Kiliham, K., and Glover, L. A. (1990) Luminescence-based nonextractive techniques forin situ detection ofEscherichia coli in soil.Appl. Environ. Microbiol. 56, 3368–3374.

    PubMed  CAS  Google Scholar 

  61. Möller, A., Gustafsson, K., and Jansson, J. K. (1994) Specific monitoring by PCR amplification and bioluminescence of firefly luciferase gene-tagged bacteria added to environmental samples.FEMS Microbiol. Ecol. 15, 193–206.

    Google Scholar 

  62. Meikle, A., Killham, K., Prosser, J. I., and Glover, L. A. (1992) Luminometric measurement of population activity of genetically modifiedPseudomonas fluorescens in the soil.FEMS Microbiol. Lett. 99, 217–220.

    Article  Google Scholar 

  63. Rattray, E. A. S., Prosser, J. I., Glover, L. A., and Killham, K. (1995) Characterization of rhizosphere colonization by luminescentEnterobacter clocae at the population and single-cell levels.Appl. Environ. Microbiol. 61, 2950–2957.

    PubMed  CAS  Google Scholar 

  64. Meikle, A., Amin-Hanjani, S., Glover, L. A., Killham, K., and Prosser, J. I. (1995) The effect of matric potential on survival and activity of aPseudomonas fluorescens inoculum in soil.Soil Biol. Biochem. 27, 881–892.

    Article  CAS  Google Scholar 

  65. Duncan, S., Glover, L. A., Killham, K., and Prosser, J. I. (1994) Luminescence-based detection of activity of starved and viable but nonculturable bacteria.Appl. Environ. Microbiol. 60, 1308–1316.

    PubMed  CAS  Google Scholar 

  66. Lindow, S. E. (1995) The use of reporter genes in the study of microbial ecology.Mol. Ecol. 4, 555–566.

    CAS  Google Scholar 

  67. Bloem, J. (1995) Fluorescent staining of microbes for direct counts. inMolecular Microbial Ecology Manual (Akkermans, A. D. L., van Elsas, J. D., and de Bruijn, F. J., eds.), Kluwer Academic, Dordrecht, The Netherlands, pp. 1–12.

    Google Scholar 

  68. Christensen, H., Bakken, L.R., and Olsen, R. A. (1993) Soil bacterial DNA and biovolume profiles measured by flow-cytometry.FEMS Microbiol. Ecol. 102, 129–140.

    Article  CAS  Google Scholar 

  69. Meikle, A., Glover, L. A., Killham, K., and Prosser, J. I. (1994) Potential luminescence as an indicator of activation of genetically modifiedPseudomonas fluorescens in liquid culture and in soil.Soil Biol. Biochem. 26, 747–755.

    Article  Google Scholar 

  70. Möller, A., Norrby, A.-M., Gustafsson, K., and Jansson, J. K. (1995) Luminometry and PCR-based monitoring of gene-tagged cyanobacteria in Baltic Sea microcosms.FEMS Microbiol. Lett. 129, 43–50.

    Article  PubMed  Google Scholar 

  71. Zaat, S. A. J., Slegtenhorst-Eegdeman, K., Tommassen, J., Geli, V., Wijffelman, C. A., and Lugtenberg, B. J. J. (1994) Construction ofphoE-caa, a novel PCR-and immunologically detectable marker gene forPseudomonas putida.Appl. Environ. Microbiol. 60, 3965–3973.

    PubMed  CAS  Google Scholar 

  72. Hwang, I. and Farrand, S. K. (1994) A novel gene tag for identifying microorganisms released into the environment.Appl. Environ. Microbiol. 60, 913–920.

    PubMed  CAS  Google Scholar 

  73. van Elsas, J. D., Van Overbeek, L. S., and Fouchier, R. (1991) A specific marker,pat, for studying the fate of introduced bacteria and their DNA in soil using a combination of detection techniques.Pl. Soil 138, 49–60.

    Article  Google Scholar 

  74. Lebarron, P. and Joux, F. (1994) Flow cytometric analysis of the cellular DNA content ofSalmonella typhimurium andAlteromonas haloplanktis during starvation and recovery in seawater.Appl. Environ. Microbiol. 60, 4345–4350.

    Google Scholar 

  75. Porter, J., Pickup, K., and Edwards, C. (1995) Flow cytometric detection of specific genes in genetically modified bacteria usingin situ polymerase chain reaction.FEMS Microbiol. Lett. 134, 51–56.

    Article  PubMed  CAS  Google Scholar 

  76. Torsvik, V. (1980) Isolation of bacterial DNA from soil.Soil Biol. Biochem. 12, 15–21.

    Article  CAS  Google Scholar 

  77. Holben, W. E., Jansson, J. K., Chelm, B. K., and Tiedje, J. M. (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community.Appl. Environ. Microbiol. 54, 703–711.

    PubMed  CAS  Google Scholar 

  78. Ogram, A., Sayler, G. S., and Barkay, T. (1988) DNA extraction and purification from sediments.J. Microb. Methods 7, 57–66.

    Article  Google Scholar 

  79. Trevors, J. T. and van Elsas, J. D. (1995)Nucleic Acids in the Environment, Springer Lab Manual, Springer-Verlagg Berlin, Germany.

    Google Scholar 

  80. Bej, A. K., DiCesare, J. L., Haff, L., and Atlas, R. M. (1991) Detection ofEscherichia coli andShigella spp. in water by using the polymerase chain reaction and gene probes foruid.Appl. Environ. Microbiol. 57, 1013–1017.

    PubMed  CAS  Google Scholar 

  81. Bej, A. K., Mahbubani, M. H., and Atlas, R. M. (1991) Detection of viableLegionella pneumaphilia in water by polymerase chain reaction and gene probe methods.Appl. Environ. Microbiol. 57, 597–600.

    PubMed  CAS  Google Scholar 

  82. Recorbet, G., Picard, C., Normand, P., and Simonet, P. (1993) Kinetics of the persistence of chromosomal DNA from genetically engineeredEscherichia coli introduced into soil.Appl. Environ. Microbiol. 59, 4289–4294.

    PubMed  CAS  Google Scholar 

  83. Rosado, A. S., Seldin, L., Wolters, A. C., and van Elsas, J. D. (1996) Quantitative 16S rDNA-targeted polymerase chain reaction and oligonucleotide hybridization for the detection ofPaenibacillus azotofixans in soil and the wheat rhizosphere.FEMS Microbiol. Ecol. 19, 153–164.

    Article  CAS  Google Scholar 

  84. Jansson, J. K. and Leser, T. (1996) Quantitative PCR of environmental samples, inMolecular Microbial Ecology Manual (Akkermans A. D. L., van Elsas, J. D., and de Bruijn, F. J., eds.), Kluwer Academic, Dordrecht, The Netherlands, pp. 2.7.4.1–19.

    Google Scholar 

  85. Leser, T. D. (1995) Quantitation ofPseudomonas sp. strain B13 (FRI) in the marine environment by competitive polymerase chain reaction.J. Microbiol. Methods 22, 249–262.

    Article  CAS  Google Scholar 

  86. Möller, A. and Jansson, J. K. (1997) Quantification of genetically-tagged cyanobacteria in Baltic Sea sediment by competitive PCR.BioTechniques 22, 512–518.

    PubMed  Google Scholar 

  87. Simon, L. Lévesque, C., and Lelonde, M. (1992) Rapid quantification by PCR of endomycorrhizal flingi colonising roots.PCR Methods Applic. 2, 76–80.

    CAS  Google Scholar 

  88. Jansson, J. K., Holben, W. E., and Tiedje, J. M. (1989) Detection in soil of a deletion in an engineered DNA sequence by using DNA probes.Appl. Environ. Microbiol. 55, 3022–3025.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet K. Jansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansson, J.K., Prosser, J.I. Quantification of the presence and activity of specific microorganisms in nature. Mol Biotechnol 7, 103–120 (1997). https://doi.org/10.1007/BF02761746

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02761746

Index Entries

Navigation