Skip to main content
Log in

Tyrosine hydroxylase and tryptophan hydroxylase do not form heterotetramers

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) both contain a C-terminal tetramerization domain composed of a leucine heptad repeat embedded within a 4,3-hydrophobic repeat. Previous mutagenesis experiments and X-ray crystallographic studies have demonstrated that these repeats are required for tetramer assembly of the hydroxylase enzymes via coiled-coil interactions. The specificity of these particular C-terminal intersubunit binding motifs was investigated by determining if TH and TPH can form heterotetramers when coexpressed in bacteria. Bacterial cells were cotransformed with TH and TPH expression plasmids under kanamycin and ampicillin selection, respectively. Immunoprecipitation of induced bacterial supernatants with a TPH monoclonal antibody demonstrated that, unlike the human TH isoforms, TH and TPH do not form heterotetramers. The data suggest that specificity of oligomerization of the aromatic amino acid hydroxylases may be partially determined by polar amino acids interspersed within the coiled-coil. This finding should be influential in the development of eukaryotic expression systems and ultimately in gene therapy approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cotton R. G. H., McAdam W., Jennings I., and Morgan F. J. (1988) A monoclonal antibody to aromatic amino acid hydroxylases: identification of the epitope.Biochem. J. 255, 193–196.

    PubMed  CAS  Google Scholar 

  • D’Sa C. M., Arthur R. E. Jr., and Kuhn D. M. (1996) Expression and deletion mutagenesis of tryptophan hydroxylase fusion proteins: delineation of the enzyme catalytic core.J. Neurochem. 67, 917–926.

    Article  PubMed  CAS  Google Scholar 

  • Grenett H. E., Ledley F. D., Reed L. L., and Woo S. L. C. (1987) Full-length cDNA for rabbit tryptophan hydroxylase: functional domains and evolution of aromatic amino acid hydroxylases.Proc. Natl. Acad. Sci. USA 84, 5530–5534.

    Article  PubMed  CAS  Google Scholar 

  • Goodwill K. E., Sabatier C., Marks C., Raag R., Fitzpatrick P. F., and Stevens R. C. (1997) Crystal structure of tyrosine hydroxylase at 2. 3 Å and its implications for inherited neurodegenerative diseases.Nature Struc. Biol. 4, 578–585.

    Article  CAS  Google Scholar 

  • Kammerer R. A. (1997) α-Helical coiled-coil oligomerization domains in extracellular proteins.Matrix Biol. 15, 555–565.

    Article  PubMed  CAS  Google Scholar 

  • Kumer S. C., Mockus S. M., Rucker P. J., and Vrana K. E. (1997) Amino terminal deletion analysis of tryptophan hydroxylase: PKA phosphorylation occurs at serine-58.J. Neurochem. 69, 1738–1745.

    Article  PubMed  CAS  Google Scholar 

  • Lewis D. A., Melchitzky D. S., and Haycock J. W. (1994) Expression and distribution of two isoforms of tyrosine hydroxylase in macaque monkey brain.Brain Res. 656, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Liu X. and Vrana K. E. (1991) Leucine zippers and coiled-coils in the aromatic amino acid hydroxylases.Neurochem. Int. 18, 27–31.

    Article  CAS  PubMed  Google Scholar 

  • Lohse D. L. and Fitzpatrick P. F. (1993) Identification of the intersubunit binding region in rat tyrosine hydroxylase.Biochem. Biophys. Res. Commun. 197, 1543–1548.

    Article  PubMed  CAS  Google Scholar 

  • Lumb K. J. and Kim P. S. (1995) A buries polar interaction imparts structural uniqueness in a designed heterodimeric coiled coil.Biochemistry 34, 8642–8648.

    Article  PubMed  CAS  Google Scholar 

  • Mockus S. M., Kumer S. C., and Vrana K. E. (1997a) A chimeric tyrosine/tryptophan hydroxylase: the tyrosine hydroxylase regulatory domain serves to stabilize enzyme activity.J. Mol. Neurosci. 9, 35–48.

    PubMed  CAS  Google Scholar 

  • Mockus S. M., Kumer S. C., and Vrana K. E. (1997b) Carboxyl terminal deletion analysis of tryptophan hydroxylase.Biochim. Biophys. Acta,1342, 132–140.

    PubMed  CAS  Google Scholar 

  • Vrana K. E., Walker S. J., Rucker P., and Liu X. (1994a) A carboxyl terminal leucine zipper is required for tyrosine hydroxylase tetramer formation.J. Neurochem. 63, 2014–2020.

    Article  PubMed  CAS  Google Scholar 

  • Vrana K. E., Rucker P. J., and Kumer S. C. (1994b) Recombinant rabbit tryptophan hydroxylase is a substrate for cAMP-dependent protein kinase.Life Sci. 55, 1045–1052.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mockus, S.M., Yohrling, G.J. & Vrana, K.E. Tyrosine hydroxylase and tryptophan hydroxylase do not form heterotetramers. J Mol Neurosci 10, 45–51 (1998). https://doi.org/10.1007/BF02737084

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02737084

Index Entries

Navigation