Skip to main content
Log in

Fish biomass size spectra in Chesapeake Bay

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Biomass size spectra of pelagic fish were modeled to describe community structure, estimate potential fish production, and delineate trophic relationships in Chesapeake Bay. Spectra were constructed from midwater trawl collections each year in April, June–August, and October 1995–2000. The size spectra were bimodal: the first spectral dome corresponded to small zooplanktivorous fish, primarily bay anchovyAnchoa mitchilli; the second dome consisted of larger fish from several feeding guilds that are supported by multiple prey-predator linkages. Annual production estimates of pelagic fish, derived from a mean production to biomass ratio, varied nearly three-fold, ranging from 162 × 109 kcal (125 × 103 tons) in 1996 to 457 × 109 kcal (352 × 103 tons) in 2000. Seasonally, the biomass level and mean individual sizes of fish in the first dome increased from April to October, while the biomass level of the second dome was relatively stable. Regionally, biomass levels in the second dome were higher than biomasses in the first dome for the upper and lower Bay, but were minimal in the middle Bay where seasonal and episodic hypoxia occurs. To test a benthic-pelagic coupling hypothesis that could explain the higher biomass in the second domes for the lower and upper Bay, a cyclic size-spectrum model was fit that included only species in the zooplanktivorous-piscivorous fish guilds. The mean, normalized slope equaled −1, indicating that zooplanktivorous fish may support piscivore production, but that a benthic-pelagic linkage is required to fully support fish production in the second dome. Interannual variability in slopes and intercepts of modeled size spectra was related to salinity, recruitment level of bay anchovy, and the primary axis of a correspondence analysis (salinity effect) on fish community structure. The spectral slope and intercept of normalized spectra were lowest in 1996, a near-record wet year. Results suggest that fish size spectra can be developed as useful indicators of ecosystem state and response to perturbations, especially if prey-predator relationships are explicitly represented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Ahrenholz, D. W. 1991. Population biology and life history of North American menhadens.Marine Fisheries Review 53:3–19.

    Google Scholar 

  • Baird, D. andR. E. Ulanowicz. 1989. The seasonal dynamics of the Chesapeake Bay ecosystem.Ecological Monographs 59: 329–364.

    Article  Google Scholar 

  • Banse, K. andS. Mosher. 1980. Adult body mass and annual production/biomass relationships of field populations.Ecological Monographs 50:355–379.

    Article  Google Scholar 

  • Bianchi, G., H. Gislason, K. Graham, L. Hill, X. Jin, K. Koranteng, S. Manickchand-Heileman, I. Pay, K. Sainsbury, F. Sanchez, andK. Zwanenburg. 2000. Impact of fishing on size composition and diversity of demersal fish communities.ICES Journal of Marine Science 57:558–571.

    Article  Google Scholar 

  • Borgmann, U. 1982. Particle-size conversion efficiency and total animal production in pelagic ecosystems.Canadian Journal of Fisheries and Aquatic Sciences 39:668–674.

    Article  Google Scholar 

  • Borgmann, U. 1987. Models on the slope of, and biomass flow up, the biomass size spectrum.Canadian Journal of Fisheries and Aquatic Sciences 44:136–140.

    Article  Google Scholar 

  • Boudreau, P. R. andL. M. Dickie. 1989. Biological models of fisheries production based on physiological and ecological scalings of body size.Canadian Journal of Fisheries and Aquatic Sciences 46:614–623.

    Article  Google Scholar 

  • Boudreau, P. R. andL. M. Dickie. 1992. Biomass spectra of aquatic ecosystems in relation to fisheries yield.Canadian Journal of Fisheries and Aquatic Sciences 49:1528–1538.

    Article  Google Scholar 

  • Boudreau, P. R. L. M. Dickie andS. R. Kerr. 1991. Body-size spectra of production and biomass as system-level indicators of ecological dynamics.Journal of Theoretical Biology 152:329–339.

    Article  Google Scholar 

  • Breitburg, D. L. 1992. Episodic hypoxia in Chesapeake Bay: Interacting effects of recruitment, behavior, and physical disturbance.Ecological Monographs 62:525–546.

    Article  Google Scholar 

  • Breitburg, D. L., L. Pihl, andS. E. Kolesar. 2001. Effects of low dissolved oxygen on the behavior, ecology and harvest of fishes: A comparison of the Chesapeake Bay and Baltic-Kattegat systems, p. 241–267.In N. N. Rabalais and R. E. Turner (eds.), Coastal Hypoxia: Consequences for Living Resources and Ecosystems, Coastal and Estuarine Studies 58. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Caddy, J. F., J. Csirke, S. M. Garcia, R. J. R., Grainger, D. Pauly, andR. F. V. Christensen. 1998. How pervasive is “Fishing Down Marine Food Webs”?Science 282:1383.

    Article  Google Scholar 

  • Cooper, S. R. andG. S. Brush. 1993. A 2,500-year history of anoxia and eutrophication in Chesapeake Bay.Estuaries 16: 617–626.

    Article  CAS  Google Scholar 

  • Cronin, W. B. 1971. Volumetric, Areal, and Tidal Statistics of the Chesapeake Bay Estuary and Its Tributaries, Special Report 20. Chesapeake Bay Institute, Johns Hopkins University, Baltimore, Maryland.

    Google Scholar 

  • Cyr, H. andR. H. Peters. 1996. Biomass-size spectra and the prediction of fish biomass in lakes.Canadian Journal of Fisheries and Aquatic Sciences 53:994–1006.

    Article  Google Scholar 

  • Dickie, L. M., S. R. Kerr, andP. R. Boudreau. 1987. Size-dependent processes underlying regularities in ecosystem structure.Ecological Monographs 57:233–250.

    Article  Google Scholar 

  • Duplisea, D. E. andS. R. Kerr. 1995. Application of a biomass size spectrum model to demersal fish data from the Scotian Shelf.Journal of Theoretical Biology 177:263–269.

    Article  Google Scholar 

  • Friedland, K. D., L. W. Haas, andJ. V. Merriner. 1984. Filtering rates of the juvenile Atlantic menhaden Brevoortia tyrannus (Pisces: Clupeidae), with consideration of the effects of detritus and swimming speed.Marine Biology 84:109–117.

    Article  Google Scholar 

  • Gaedke, U. 1992a. Identifying ecosystem properties: A case study using plankton biomass size distributions.Ecological Modelling 63:277–298.

    Article  Google Scholar 

  • Gaedke, U. 1992b. The size distribution of plankton biomass in a large lake and its seasonal variability.Limnology and Oceanography 37:1202–1220.

    Google Scholar 

  • Hagy, III,J. D. 2002. Eutrophication, hypoxia, and trophic transfer efficiency in Chesapeake Bay. Ph.D. Dissertation, University of Maryland, College Park, Maryland.

    Google Scholar 

  • Harding, L. W., M. E. Mallonee, andE. S. Perry. 2002. Toward a predictive understanding of primary productivity in a temperate, partially stratified estuary.Estuarine Coastal and Shelf Science 55:437–463.

    Article  CAS  Google Scholar 

  • Harding, L. W. andE. S. Perry. 1997. Long-term increase of phytoplankton biomass in Chesapeake Bay, 1950–1994.Marine Ecology Progress Series 157:39–52.

    Article  Google Scholar 

  • Hartman, K. J. andS. B. Brandt. 1995. Estimating energy density of fish.Transactions of the American Fisheries Society 124:347–355.

    Article  Google Scholar 

  • Heath, M. R. 1996. The consequences of spawning time and dispersal patterns of larvae for spatial and temporal variability in survival to recruitment, p. 175–207.In Y. Watanabe, Y. Yamashita, and Y. Oozeki (eds.), Survival Strategies in Early Life Stages of Marine Resources. A. A. Balkema, Netherlands.

    Google Scholar 

  • Hill, M. O. 1974. Correspondence analysis: A neglected multivariate method.Applied Statistics 23:340–354.

    Article  Google Scholar 

  • Holland, A. F., N. K. Mountford, M. H. Hiegel, K. R. Kauneyer, andJ. A. Mihursky. 1980. The influence of predation on infaunal abundance in upper Chesapeake Bay.Marine Biology 57:221–235.

    Article  Google Scholar 

  • Holling, C. S. 1992. Cross-scale morphology, geometry, and dynamics of ecosystems.Ecological Monographs 62:447–502.

    Article  Google Scholar 

  • Homer, M. and W. R. Boynton. 1978. Stomach analysis of fish collected in the Calvert cliffs region, Chesapeake Bay—1997. Final report to Maryland Department of Natural Resources, Power Plant Siting Program, University of Maryland Center for Environmental & Estuarine Studies. Chesapeake Biological Laboratory. Reference No. UMCEES 78-154-CBL. Annapolis, Maryland.

  • Houde, E. D., M. J. Fogarty, and T. J. Miller. 1998. Prospects for multispecies fisheries management in Chesapeake Bay. A Workshop. April 1–3 1998. Scientific and Technical Advisory Committee Publication 98-002 Solomons, Maryland.

  • Houde, E. D., S. Jukic-Peladic, S. B. Brandt, andS. D. Leach. 1999. Ecosystems at the land-margin: Drainage basin to coastal sea Fisheries: Trends in catches, abundances and management, p. 341–366.In T. C. Malone, A. Malej, L. W. Harding, N. Smodlaka, and R. E. Turner (eds.), Coastal and Estuarine Studies, Volume 55. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Iverson, R. L. 1990. Control of marine fish production.Limnology and Oceanography 35:1593–1604.

    Google Scholar 

  • Jennings, S. andJ. L. Blanchard. 2004. Fish abundance with no fishing: Predictions based on macroecological theory.Journal of Animal Ecology 73:632–642.

    Article  Google Scholar 

  • Jennings, S., S. P. R. Greenstreet, L. Hill, G. J. Piet, J. K. Pinnegar, andK. J. Warr. 2002. Long-term trends in the trophic structure of the North Sea fish community: Evidence from stable-isotope analysis, size-spectra and community metrics.Marine Biology 141:1085–1097.

    Article  Google Scholar 

  • Jones, R. 1984. Some observations on energy transfer through the North Sea and Georges Bank food webs.Rapports et Procesverbaux des Reunions du Conseil Internationale pour l’Exploration de la Mer 183:204–217.

    Google Scholar 

  • Jung, S. 2002. Fish community structure and the spatial and temporal variability in recruitment and biomass production in Chesapeake Bay. Ph.D. Dissertation, University of Maryland, College Park, Maryland.

    Google Scholar 

  • Jung, S. andE. D. Houde. 2003. Spatial and temporal variability of pelagic fish community structure and distribution in Chesapeake Bay, U.S.A..Estuarine Coastal and Shelf Science 58:341–357.

    Article  CAS  Google Scholar 

  • Jung, S. andE. D. Houde. 2004a. Recruitment and spawning-stock biomass distribution of bay anchovy (Anchoa mitchilli) in Chesapeake Bay.Fishery Bulletin, U.S. 102:63–77.

    Google Scholar 

  • Jung, S. andE. D. Houde. 2004b. Production of bay anchovyAnchoa mitchilli in Chesapeake Bay: Application of size-based theory.Marine Ecology Progress Series 281:217–232.

    Article  Google Scholar 

  • Kemp, W. M., E. M. Smith, M. Marvin-DiPasquale, andW. R. Boynton. 1997. Organic carbon, balance and net ecosystem metabolism in Chesapeake Bay.Marine Ecology Progress Series 150:229–248.

    Article  CAS  Google Scholar 

  • Kerr, S. R. andL. M. Dickie. 2001. The Biomass Spectrum: A Predator-prey Theory of Aquatic Production, 1st edition. Columbia University Press, New York.

    Google Scholar 

  • Latour, R. J., M. J. Brush, andC. F. Bonzek. 2003. Ecosystem-based fisheries management: Strategies for multispecies modeling and associated data requirements.Fisheries 28:10–22.

    Article  Google Scholar 

  • Lehman, J. T. 1988. Ecological principles affecting community structure and secondary production by zooplankton in marine and freshwater environments.Limnology and Oceanography 33:931–945.

    Google Scholar 

  • Levin, S. A. 1980. Several measures of trophic structure applicable to complex food webs.Journal of Theoretical Biology 83: 195–206.

    Article  Google Scholar 

  • Lewis, V. P. andD. S. Peters. 1994. Diet of juvenile and adult Atlantic menhaden in estuarine and coastal habitats.Transactions of the American Fisheries Society 124:520–537.

    Google Scholar 

  • Ludwig, J. A. andJ. F. Reynolds. 1988. Statistical Ecology. A Primer on Methods and Computing, 1st edition. John Wiley and Sons, New York.

    Google Scholar 

  • Miller, T. J., M. C. Christman, K. Curti, E. D. Houde, D. Loewensteiner, J. A. Nye, B. Muffley, A. F. Sharov, andJ. H. Volstad. 2004. Abundance, distribution and diversity of Chesapeake Bay fishes: Results from CHESFIMS (Chesapeake Bay Fishery Independent Multispecies Fisheries Survey), p. 81–89.In D. M. Orner (ed.), Chesapeake Bay Fisheries Research Program Symposium Report. 2003. National Oceanic and Atmospheric Administration Chesapeake Bay Office. Annapolis, Maryland.

    Google Scholar 

  • Minns, C. K., E. S. Millard, J. M. Cooley, M. G. Johnson, D. A. Hurley, K. H. Nicholls, G. W. Robinson, G. E. Owen, andA. Crowder. 1987. Production and biomass-size spectra in the Bay of Quinte, a eutrophic ecosystem.Canadian Journal of Fisheries and Aquatic Sciences 44:148–155.

    Article  Google Scholar 

  • Platt, T. andK. Denman. 1978. The structure of pelagic marine ecosystems.Rapports et Process-verbaux des Reunions du Conseil Internationale pour l’Exploration de la Mer 173:60–65.

    Google Scholar 

  • Pope, J. G., J. G. Shepherd, andJ. Webb. 1994. Successful surfriding on size spectra: The secret of survival in the sea.Philosophical Transactions of the Royal Society of London. B 343:41–49.

    Article  Google Scholar 

  • Purcell, J. E. andM. N. Arai. 2001. Interactions of pelagic cnidarians and etenophores with fish: A review.Hydrobiologia 451:27–44.

    Article  Google Scholar 

  • Purcell, J. E., D. A. Nemazie, S. E. Dorsey, E. D. Houde, andJ. C. Gamble. 1994. Predation mortality of bay anchovyAnchoa mitchilli eggs and larvae due to scyphomedusae and ctenophores in Chesapeake Bay.Marine Ecology Progress Series 114: 47–58.

    Article  Google Scholar 

  • Rice, J. C. 2000. Evaluating fishery impacts using metrics of community structure.ICES Journal of Marine Science 57:682–688.

    Article  Google Scholar 

  • Rochet, M. andV. M. Trenkel. 2003. Which community indicators can measure the impact of fishing? A review and proposals.Canadian Journal of Fisheries and Aquatic Sciences 60:67–85.

    Article  Google Scholar 

  • SAS Institute Inc. 1989. SAS/STAT User’s Guide, Version 6, 4th edition. SAS Institute Inc., Cary, North Carolina.

    Google Scholar 

  • Scharf, F. S., F. Juanes, andR. A. Rountree. 2000. Predator size-prey size relationships of marine fish predators: Interspecific variation and effects of ontogeny and body size on trophic-niche breadth.Marine Ecology Progress Series 208:229–248.

    Article  Google Scholar 

  • Schwinghamer, P. 1985. Observations on size-structure and pelagic coupling of some shelf and abyssal benthic communities, p. 347–359.In P. E. Gibbs (ed.), Proceedings of the Nineteenth European Marine Biology Symposium. Cambridge University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Sheldon, R. W., A. Prakash, andW. H. Sutcliffe. 1972. The size distribution of particles in the ocean.Limnology and Oceanography 17:327–340.

    Article  Google Scholar 

  • Sprules, W. G., S. B. Brandt, D. J. Stewart, M. Munawar, E. H. Jin, andJ. Love. 1991. Biomass size spectrum of the Lake Michigan pelagic food web.Canadian Journal of Fisheries and Aquatic Sciences 48:105–115.

    Google Scholar 

  • Sprules, W. G. andM. Munawar. 1986. Plankton size spectra in relation to ecosystem productivity, size and perturbation.Canadian Journal of Fisheries and Aquatic Sciences 43:1789–1794.

    Article  Google Scholar 

  • Sprules, W. G. andJ. D. Stockwell. 1995. Size-based biomass and production models in the St Lawrence Great Lakes.ICES Marine Science Symposium 52: 705–710.

    Article  Google Scholar 

  • Thiebaux, M. L. andL. M. Dickie. 1992. Models of aquatic biomass size spectra and the common structure of their solution.Journal of Theoretical Biology 159:147–161.

    Article  Google Scholar 

  • Thiebaux, M. L. andL. M. Dickie. 1993. Structure of the body-size spectrum of the biomass in aquatic ecosystems: A consequence of allometry in predator-prey interactions.Canadian Journal of Fisheries and Aquatic Sciences 50:1308–1317.

    Article  Google Scholar 

  • Trenkel, V. M. andM. I. Rochet. 2003. Performance of indicators derived from abundance estimates for detecting the impact of fishing on a fish community.Canadian Journal of Fisheries and Aquatic Sciences 60:67–85.

    Article  Google Scholar 

  • Wang, S. B. andE. D. Houde. 1994. Energy storage and dynamics in bay anchovyAnchoa mitchilli.Marine Biology 121:219–227.

    Article  Google Scholar 

  • Warwick, R. M. 1984. Species size distributions in marine benthic communities.Oecologia 61:32–41.

    Article  Google Scholar 

  • Warwick, R. M. andI. R. Joint. 1987. The size distribution of organisms in the Celtic Sea: From bacteria to Metazoa.Oecologia 73:185–191.

    Article  Google Scholar 

  • Weisberg, S. B. andA. J. Janicki. 1990. Summer feeding patterns of white perch, channel catfish, and yellow perch in the Susquehanna River, Maryland.Journal of Freshwater Ecology 5: 391–405.

    Google Scholar 

  • Witek, Z. andA. Krajewska-Soltys. 1989. Some examples of the epipelagic plankton size structure in high latitude oceans.Journal of Plankton Research 11:1143–1155.

    Article  Google Scholar 

  • Zhou, M. andM. E. Huntley. 1997. Population dynamics theory of plankton based on biomass spectra.Marine Ecology Progress Series 159:61–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukgeun Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, S., Houde, E.D. Fish biomass size spectra in Chesapeake Bay. Estuaries 28, 226–240 (2005). https://doi.org/10.1007/BF02732857

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732857

Keywords

Navigation