Skip to main content
Log in

Rho GTPases in human carcinogenesis: a tale of excess

GTPasas Rho en carcinogénesis humana: una cuestión de exceso

  • Revisiones
  • Published:
Revista de Oncología Aims and scope Submit manuscript

Abstract

Rho GTPases are proteins that in response to diverse stimuli control key signaling and structural aspects of the cell. Although early studies had proposed a role for Rho GTPases in cellular transformation, this effect was underestimated by the fact that no genetic mutations affecting Rho-encoding genes was found in human tumors. However, in recent years a high incidence of overexpression of different members of the family of Rho GTPases in human tumors has been detected which is leading to a great interest in the cellular effects elicited by these oncoproteins. As well, the characterization of downstream effectors and upstream regulators of Rho GTPases provides crucial clues on the specific cellular effects that permit aberrant cellular growth and tumorigenesis. A direct link between the functions of some of these signaling elements and regulation of the cell cycle, cytoskeletal rearrangements and cell adhesion has been observed in distinct types of human tumors. Provided this information, a number of drugs that affect Rho signaling at different levels have been described with promisingin vivo antitumoral activity. In this review, the current evidence of dysregulation of Rho signaling in human tumors is assembled.

Resumen

Las GTPasas Rho regulan un alto número de procesos de señalización y estructurales de la célula en respuesta a diversos estímulos. El hecho de que no se haya detectado mutación alguna en la secuencia primaria de ningún miembro de la familia de GT-Pasas Rho ha conllevado a que se subestimase su posible papel en la biología de diversos tumores humanos. Sin embargo, el creciente número de trabajos recientes que describen una elevada incidencia muy alta de sobreexpresión de las proteínas Rho en un alto número de tumores ha suscitado mucho interés en la comunidad científica. La caracterización de proteínas efectoras y de la señalización dependiente de Rho ha permitido identificar los mecanismos a través de los cuales esta familia de proteínas inducen una proliferación aberrante y, en última instancia, el desarrollo y progresión del tumor. La relación entre la actividad de alguna de las proteínas efectoras de Rho con el ciclo celular, reorganización del citoesqueleto y la adhesión celular ha sido observada en diversos tipos de tumores humanos. Además se ha sintetizado una serie de compuestos que afectan las rutas de señalización dependientes de Rho a varios niveles y que muestran una actividad antitumoralin vivo prometedora. En esta revisión realizamos un detallado resumen del conocimiento actual acerca de la desregulación de las proteínas Rho en tumores humanos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Aelst L, D'Souza-Schorey C. Rho GTPases and signaling network. Genes & Dev 1997;11:2295–322.

    Article  Google Scholar 

  2. Aznar S, Lacal JC. Searching new targets for anticancer drug design: the families of Ras and RhoGTPases and their effectors. Prog Nucleic Acid Res Mol Biol 2001;67: 193–234.

    Article  CAS  Google Scholar 

  3. Aznar S, Lacal JC. Rho signals to cell growth and apoptosis. Cancer Lett 2001;165:1–10.

    Article  CAS  Google Scholar 

  4. Bar-Sagi D, Hall A. Ras and Rho GTPases: a family reunion. Cell 2000;103:227–38.

    Article  CAS  Google Scholar 

  5. Ridley AJ. Rho family proteins: coordinating cell responses. Trends in cell Biol 2001;11:471–7.

    Article  CAS  Google Scholar 

  6. Schmitz AAP, Govek E-E, Bottner B, Van Aelst L. Rho GTPases: Signaling, Migration and Invasion. Exp Cell Research 2000;261:1–12.

    Article  CAS  Google Scholar 

  7. Settleman J. Rac 'n Rho: the music that shapes a developing embryo. Dev Cell 2001;1:321–31.

    Article  CAS  Google Scholar 

  8. Settleman J. Getting in shape with Rho. Nat Cell Biol 2000;2:E7–9.

    Article  CAS  Google Scholar 

  9. Boettner B, Van Aelst L. The role of Rho GTPases in disease development. Gene 2002;286:155–74.

    Article  CAS  Google Scholar 

  10. Tao W, Pennica D, Xu L, Kalejta RF, Levine AJ. Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev 2001;5:1796–807.

    Article  Google Scholar 

  11. Ballestero RP, Esteve P, Perona P, Jiménez B, Lacal JC. Biological function of Aplysia californica rho gene. The Superfamily of ras related Genes. NATO Advanced Science Institute Series, 1991; vol. A 220:273–42. Plenum Press.

    Google Scholar 

  12. Perona R, Esteve P, Jiménez P, et al. Tumorigenic activity of rho genes from Aplysia californica. Oncogene 1993;8:1285–92.

    CAS  PubMed  Google Scholar 

  13. Michiels F, Habets GG, Stam JC, van der Kammen RA, Collard JG. A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 1995;375:338–40.

    Article  CAS  Google Scholar 

  14. del Peso L, Hernández-Alcoceba R, Embade N, et al. Rho proteins induce metastatic properties in vivo. Oncogene 1997;15:3047–3057.

    Article  Google Scholar 

  15. Hernández-Alcoceba R, del Peso L, Lacal JC. Ras family of GTPases in cancer cell invasion. Cellular and Molecular Life Sciences 2000;57:65–76.

    Article  Google Scholar 

  16. Yoshioka K, Matsumura F, Akedo H, Itoh K. Small GTP-binding protein Rho stimulates the actomyosin system, leading to invasion of tumor cells. J Biol Chem 1998; 273:5146–54.

    Article  CAS  Google Scholar 

  17. Pruitt K, Der CJ. Ras and Rho regulation of the cell cycle and oncogenesis. Cancer Lett 2001;171:1–10.

    Article  CAS  Google Scholar 

  18. McCormick F. Signal transduction. Why Ras needs Rho. Nature 1998;394:220–1.

    Article  CAS  Google Scholar 

  19. Khosravi-Far R, Campbell S, Rossman KL, Der CJ. Increasing complexity of Ras signal transduction: involvement of Rho family proteins. Adv Cancer Res 1998; 72:57–107.

    Article  CAS  Google Scholar 

  20. Qiu RG, Chen J, McCormick F, Symons M. A role for Rho in Ras transformation. Proc Natl Acad Sci USA 1995;92:11781–5.

    Article  CAS  Google Scholar 

  21. Qiu RG, Chen J, Kirn D, McCormick F, Symons M. An essential role for Rac in Ras transformation. Nature 1995;37:457–9.

    Article  Google Scholar 

  22. Qiu RG, Abo A, McCormick F, Symons M. Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation. Mol Cell Biol 1997;17:3449–58.

    Article  CAS  Google Scholar 

  23. Nur-E-Kamal MS, Kamal JM, Qureshi MM, Maruta H. The CDC42-specific inhibitor derived from ACK-1 blocks v-Ha-Ras-induced transformation. Oncogene 1999;18:7787–93.

    Article  CAS  Google Scholar 

  24. Boerner JL, Danielsen AJ, McManus MJ, Maihle NJ. Activation of Rho is Required For Ligand-independent Oncogenic signaling by a mutant EGF Receptor. J Biol Chem 2000;10:3691–5.

    Google Scholar 

  25. Kim BC, Yi JY, Yi SJ, et al. Rac GTPase activity is essential for EGF-induced mitogenesis. Mol Cell 1998;8:90–5.

    CAS  Google Scholar 

  26. Sachdev P, Jiang XY, Li W, Miki T, Nur-E-Kamal MS, Wang LH. Differential requirement for Rho family GT-Pases in an oncogenic insulin-like growth factor-I receptor-induced cell transformation. J Biol Chem 2001; 276:26461–71.

    Article  CAS  Google Scholar 

  27. Barone MW, Sepe L, Melillo RM, et al. RET/PTC1 oncogene signaling in PC C134 thyroid cells requires the small GTP-binding protein Rho. Oncogene 2001;20:6973–82.

    Article  CAS  Google Scholar 

  28. Royal I, Lamarche-Vane N, Lamorte L, Kaibuchi K, Park M. Activation of Cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and issociation. Mol Biol Cell 2000;11:1709–25.

    Article  CAS  Google Scholar 

  29. Kamei T, Matozaki T, Sakisaka T, et al. Coendocytosis of cadherin and c-Met to disruption of cell-cell adhesion in MDCK cells: regulation by Rho, Rac and Rab small G proteins. Oncogene 1999;18:6776–84.

    Article  CAS  Google Scholar 

  30. Whitehead IP, Zohn IE, Der CJ. Rho GTPase-dependent transformation by G protein-coupled receptors. Oncogene 2001;20:1547–55.

    Article  CAS  Google Scholar 

  31. Nakamoto M, Teramoto H, Matsumoto S, Igishi T, Shimizu E. K-ras and rhoA mutations in malignant pelural effusion. Int J Oncol 2001;19:971–6.

    CAS  PubMed  Google Scholar 

  32. Suwa H, Ohshio G, Imamura T, et al. Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. Br J Cancer 1998;177:147–52.

    Article  Google Scholar 

  33. Rihet S, Vielh P, Camonis J, Goud B, Chevillard S, de Gunzburg J. Mutation status of genes encoding RhoA, Rac1, and Cdc42 GTPases in a panel of invasive human colorectal and breast tumors. J Cancer Res Clin Oncol 2001;127:733–8.

    CAS  PubMed  Google Scholar 

  34. Suwa H, Ohshio G, Imamura T, et al. Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. Br J Cancer 1998;177:147–52.

    Article  Google Scholar 

  35. Kusama T, Mukai M, Iwasaki T, et al. 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors reduce human pancreatic cancer cell invasion and metastasis. Gastroenterology 2002;122:308–17.

    Article  CAS  Google Scholar 

  36. Kusama T, Mukai M, Iwasaki T, et al. Inhibition of epidermal growth factor-induced RhoA translocation and invasion of human pancreatic cancer cells by 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors. Cancer Res 2001;61:4885–91.

    CAS  PubMed  Google Scholar 

  37. Van Golen KL, Davies S, Wu ZF, et al. A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost ininflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res 1999;5:2511–9.

    PubMed  Google Scholar 

  38. Van Golen KL, Wu ZF, Qiao XT, Bao L, Merajver SD. RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res 2000;60:5832–8.

    PubMed  Google Scholar 

  39. Van Golen KL, Wu ZF, Qiao XT, Bao L, Merajver SD. RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells. Neoplasia 2000;2:418–25.

    Article  Google Scholar 

  40. Fritz G, Just I, Kaina B. Rho GTPases are over-expressed in human tumors. Int J Cancer 1999;81:682–7.

    Article  CAS  Google Scholar 

  41. Fritz G, Brachetti C, Bahlmann F, Schmidt M, Kaina B. Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br J Cancer 2002;87:635–44.

    Article  CAS  Google Scholar 

  42. Bouzahzah B, Albanese C, Ahmed F, et al. Rho family GTPases regulate mammary epithelium cell growth and metastasis through distinguishable pathways. Mol Med 2001;7:816–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Denoyelle C, Vasse M, Korner M, et al. Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness and metastatic properties of highly invasive breast cancer cellines: an in vitro study. Carcinogenesis 2001;22:1139–48.

    Article  CAS  Google Scholar 

  44. Bourguignon LY. CD44-mediated oncogenic signaling and cytoskeleton activation during mammary tumor progression. J Mammary Gland Biol Neoplasia 2001; 6:287–97.

    Article  CAS  Google Scholar 

  45. Bourguignon LY, Zhu H, Shao L, Zhu D, Chen YW. Rhokinase (ROK) promotes CD44v (3,8–10)-ankyrin interaction and tumor cell migration in metastatic breast cancer cells. Cell Motil Cytoskeleton 1999;43:269–87.

    Article  CAS  Google Scholar 

  46. Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 2000;406:532–5.

    Article  CAS  Google Scholar 

  47. Preudhomme C, Roumier C, Hildebrand MO, et al. Nonrandom 4p13 rearrangements of the RhoH/TTF gene, enconding a GTP-binding protein, in non-Hodgkin's lymphoma and multiple myeloma. Oncogene 2000;19: 2023–32.

    Article  CAS  Google Scholar 

  48. Lawrenson ID, Wimmer-Kleikamp SH, Lock P, et al. Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling. J Cell Sci 2002;115:1059–72.

    CAS  PubMed  Google Scholar 

  49. Eisenmann KM, McCarthy JB, Simpson MA, et al. Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas. Nat Cell Biol 1999;1:507–13.

    Article  CAS  Google Scholar 

  50. Yamamura S, Handa K, Hakomori S. A close association of GM3 with c-Src and Rho in GM3-enriched microdomains at the B16 melanoma cell surface membrane: a preliminary note. Biochem Biophys Res Commun 1997; 236:218–22.

    Article  CAS  Google Scholar 

  51. Melis R, White R. Characterization of colonic polyps by two-dimensional gel electrophoresis. Electrophoresis 1999;20:1055–64.

    Article  CAS  Google Scholar 

  52. Attoub S, Noe V, Pirola L, et al. Leptin promotes invasiveness of kidney and colonic epithelial cells via phosphoinositide 3-kinase-, rho-, and rac-dependent signaling pathways. Faseb J 2000;14:2329–38.

    Article  CAS  Google Scholar 

  53. Varker KA, Phelps SH, King MM, Williams CL. The small GTPase RhoA has greater expression in small cell lung carcinoma than in non-small cell lung carcinoma and contributes to their unique morphologies. Int J Oncol 2003;22:671–81.

    CAS  PubMed  Google Scholar 

  54. Delarue FL, Taylor BS, Sebti SM. Ras and RhoA suppress whereas RhoB enhances cytokine-induced transcription of nitric oxide synthase-2 in human normal liver AKN-1 cells and lung cancer A-549 cells. Oncogene 2001;20:6531–7.

    Article  CAS  Google Scholar 

  55. Kamai T, Arai K, Tsujii T, Honda M, Yoshida K. Overexpression of RhoA mRNA is associated with advanced stage in testicullar germ cell tumour. BJU Int 2001;87: 227–231.

    Article  CAS  Google Scholar 

  56. Kamai T, Arai K, Sumi S, et al. The rho/rho-knase pathway is involved in the progression of testicular germ cell tumor. BJU Int 2002;89:449–53.

    Article  CAS  Google Scholar 

  57. Takamura M, Sakamoto M, Genda T, Ichida T, Asakura H, Hirohashi S. Inhibition of intrahepatic metastasis of human hepatocellular carcinoma by Rho-associated protein kinase inhibitor Y-27632. Hepatology 2001;33: 577–81.

    Article  CAS  Google Scholar 

  58. Genda T, Sakamoto M, Ichida T, et al. Cell motility mediated by Rho and Rho-associated protein kinase plays a critical role in intrahepatic metastasis of human hepatocellular carcinoma. Hepatology 1999;30:1027–36.

    Article  CAS  Google Scholar 

  59. Abraham MT, Kuriakose MA, Sacks PG, et al. Motility-related proteins as markers for head and neck squamous cell cancer. Laryngoscope 2001;111:1285–9.

    Article  CAS  Google Scholar 

  60. Kamai T, Kawakami S, Koga F, et al. RhoA is associated with invasion and lymph node metastasis in upper urinary tract cancer. BJU Int 2003;91:234–8.

    Article  CAS  Google Scholar 

  61. De Toledo M, Coulon V, Schmidt S, Fort P, Blangy A. The gene for a new brain specific RhoA exchange factor maps to the highly unstable chromosomal region 1p36.2–1p36.3. Oncogene 2001;20:7307–17.

    Article  Google Scholar 

  62. Hordijk PL, Ten Klooster JP, van der Kammen RA, Michiels F, Oomen LC, Collard JG. Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science 1997; 278:1464–6.

    Article  CAS  Google Scholar 

  63. Engers R, Zwaka TP, Gohr L, Weber A, Gerharz CD, Gabbert HE. Tiam1 mutations in human renal-cell carcinomas. Int J Cancer 2000;88:369–76.

    Article  CAS  Google Scholar 

  64. Malliri A, van der Kammen RA, Clark K, van der Valk M, Michiels F, Collard JG. Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature 2002;417:867–71.

    Article  CAS  Google Scholar 

  65. Reuther GW, Lambert QT, Booden MA, et al. Leukemia-associated Rho guanine nucleotide exchange factor, a Dbl family protein found mutated in leukemia, causes transformation by activation of RhoA. J Biol Chem 2001; 276:27145–51.

    Article  CAS  Google Scholar 

  66. Kourlas PJ, Strout MP, Becknell B, et al. Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. Proc Natl Acad Sci USA 2000;97: 2145–50.

    Article  CAS  Google Scholar 

  67. Fukuhara S, Chikumi H, Gutkind JS Leukemia-associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G(12) family to Rho. FEBS Lett 2000;485:183–8.

    Article  CAS  Google Scholar 

  68. Seraj MJ, Harding MA, Gildea JJ, Welch DR, Theodorescu D The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines. Clin Exp Metastasis 2000; 18:519–25.

    Article  CAS  Google Scholar 

  69. Jordan P, Brazao R, Boavida MG, Gespach C, Chastre E. Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene 1999;18:6835–9.

    Article  CAS  Google Scholar 

  70. Schnelzer A, Prechtel D, Knaus U, et al. Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 2000;19:3013–20.

    Article  CAS  Google Scholar 

  71. Matos P, Skaug J, Marques B, et al. Small GTPase Rac1: structure, localization, and expression of the human gene. Biochem Biophys Res Commun 2000;277:741–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Lacal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benitah, S.A., Espina, C., Valerón, P.F. et al. Rho GTPases in human carcinogenesis: a tale of excess. Rev Oncol 5, 70–78 (2003). https://doi.org/10.1007/BF02728199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728199

Key words

Palabras clave

Navigation