Skip to main content
Log in

Melting of heterogeneous vortex matter: The vortex ‘nanoliquid’

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Disorder and porosity are parameters that strongly influence the physical behavior of materials, including their mechanical, electrical, magnetic and optical properties. Vortices in superconductors can provide important insight into the effects of disorder because their size is comparable to characteristic sizes of nanofabricated structures. Here we present experimental evidence for a novel form of vortex matter that consists of inter-connected nanodroplets of vortex liquid caged in the pores of a solid vortex structure, like a liquid permeated into a nanoporous solid skeleton. Our nanoporous skeleton is formed by vortices pinned by correlated disorder created by high-energy heavy ion irradiation. By sweeping the applied magnetic field, the number of vortices in the nanodroplets is varied continuously from a few to several hundred. Upon cooling, the caged nanodroplets freeze into ordered nanocrystals through either a first-order or a continuous transition, whereas at high temperatures a uniform liquid phase is formed upon delocalization-induced melting of the solid skeleton. This new vortex nanoliquid displays unique properties and symmetries that are distinct from both solid and liquid phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M E Davis,Nature 417, 813 (2002)

    Article  ADS  Google Scholar 

  2. P Yanget al, Science 287, 465 (2000)

    Article  ADS  Google Scholar 

  3. Y Gogotsiet al, Nature Materials 2, 591 (2003)

    Article  ADS  Google Scholar 

  4. L N Rosiet al, Science 300, 1127 (2003)

    Article  ADS  Google Scholar 

  5. D Maspochet al, Nature Materials 2, 190 (2003)

    Article  ADS  Google Scholar 

  6. G Blatteret al, Rev. Mod. Phys. 66, 1125 (1994)

    Article  ADS  Google Scholar 

  7. E H Brandt,Rep. Prog. Phys. 58, 1465 (1995)

    Article  ADS  Google Scholar 

  8. T Nattermann and S Scheidl,Adv. Phys. 49, 607 (2000)

    Article  ADS  Google Scholar 

  9. T Giamarchi and P Le Doussal,Phys. Rev. B52, 1242 (1995)

    ADS  Google Scholar 

  10. T Kleinet al, Nature 413, 404 (2001)

    Article  ADS  Google Scholar 

  11. A Petreanet al, Phys. Rev. Lett. 84, 5852 (2000)

    Article  ADS  Google Scholar 

  12. U Divakaret al, Phys. Rev. Lett. 92, 237004 (2004)

    Article  ADS  Google Scholar 

  13. D R Nelson and V M Vinokur,Phys. Rev. Lett. 68, 2398 (1992)

    Article  ADS  Google Scholar 

  14. C J Van der Beeket al, Phys. Rev. Lett. 86, 5136 (2001)

    Article  ADS  Google Scholar 

  15. S A Grigeraet al, Phys. Rev. Lett. 81, 2348 (1998)

    Article  ADS  Google Scholar 

  16. L Radzihovsky,Phys. Rev. Lett. 74, 4923 (1993)

    Article  ADS  Google Scholar 

  17. P Senet al, Phys. Rev. Lett. 86, 4092 (2001)

    Article  ADS  Google Scholar 

  18. S S Banerjee,Phys. Rev. Lett. 90, 087004 (2003)

    Article  ADS  Google Scholar 

  19. M Menghiniet al, Phys. Rev. Lett. 90, 147001 (2003)

    Article  ADS  Google Scholar 

  20. Y Nonomura and H Xiao,Euro. Phys. Lett. 65, 533 (2004)

    Article  ADS  Google Scholar 

  21. C Dasgupta and O T Valls,Phys. Rev. Lett. 91, 127002 (2003)

    Article  ADS  Google Scholar 

  22. C Dasgupta and O T Valls,Phys. Rev. B69, 214520 (2004)

    ADS  Google Scholar 

  23. S Tyagi and Yadin Y Goldschmidt,Phys. Rev. B67, 214501 (2003)

    ADS  Google Scholar 

  24. A V Lopatin and V M Vinokur,Phys. Rev. Lett. 92, 067008 (2004)

    Article  ADS  Google Scholar 

  25. J Kierfeld and V M Vinokur,Phys. Rev. Lett. 94, 077005 (2005)

    Article  ADS  Google Scholar 

  26. J P Rodriguez,Phys. Rev. B70, 224507 (2004)

    ADS  Google Scholar 

  27. A Morozovet al, Phys. Rev. B67, 140505 (2003)

    ADS  Google Scholar 

  28. S S Banerjeeet al, Phys. Rev. Lett. 93, 097002 (2004)

    Article  ADS  Google Scholar 

  29. H Daiet al, Science 265, 1552 (1994)

    Article  ADS  Google Scholar 

  30. H Safaret al, Phys. Rev. Lett. 69, 824 (1992)

    Article  ADS  Google Scholar 

  31. W K Kwoket al, Phys. Rev. Lett. 69, 3370 (1992)

    Article  ADS  Google Scholar 

  32. H Pastorizaet al, Phys. Rev. Lett. 72, 2951 (1994)

    Article  ADS  Google Scholar 

  33. E Zeldovet al, Nature 375, 373 (1995)

    Article  ADS  Google Scholar 

  34. A Schillinget al, Nature 382, 791 (1996)

    Article  ADS  Google Scholar 

  35. A Soibelet al, Nature 406, 282 (2000)

    Article  ADS  Google Scholar 

  36. A Soibelet al, Phys. Rev. Lett. 87, 167001 (2001)

    Article  ADS  Google Scholar 

  37. M Yasugakiet al, Phys. Rev. B65, 212502 (2002)

    ADS  Google Scholar 

  38. C J van der Beeket al,Proceedings of the NATO Advanced Research Workshop on Magneto-Optical Imaging Oystese, Norway, edited by T H Johansen and D V Shant-sev, August 27–31, 2003 (Kluwer) pp. 79

  39. N Morozovet al, Phys. Rev. B54, R3784 (1996))

    ADS  Google Scholar 

  40. B Khaykovichet al, Phys. Rev. B57, R14088 (1998)

    ADS  Google Scholar 

  41. M V Indenbomet al, J. Alloys and Compounds 195, 499 (1993)

    Article  Google Scholar 

  42. U Welpet al, Nature 376, 44 (1995)

    Article  ADS  Google Scholar 

  43. M E Gaevskiet al, Phys. Rev. B59, 9655 (1999)

    ADS  Google Scholar 

  44. D Larbalestieret al, Nature 414, 368 (2001)

    Article  ADS  Google Scholar 

  45. R J Wijngaardenet al, Phys. Rev. B54, 6742 (1996)

    ADS  Google Scholar 

  46. R J Wijngaardenet al, Physica C295, 177 (1998)

    ADS  Google Scholar 

  47. E H Brandt,Phys. Rev. B46, 8628 (1992)

    ADS  Google Scholar 

  48. T T M Palstraet al, Phys. Rev. Lett. 61, 1662 (1988)

    Article  ADS  Google Scholar 

  49. D T Fuchset al, Phys. Rev. Lett. 81, 3944 (1998)

    Article  ADS  Google Scholar 

  50. R Buschet al, Phys. Rev. Lett. 69, 522 (1992)

    Article  ADS  Google Scholar 

  51. H Safaret al, Phys. Rev. B46, 14238 (1992)

    ADS  Google Scholar 

  52. B Khaykovichet al, Phys. Rev. B61, R9261 (2000)

    ADS  Google Scholar 

  53. N Kohuboet al, Phys. Rev. Lett. 88, 247004 (2002)

    Article  ADS  Google Scholar 

  54. C M Marchetti and D Nelson,Physica C330, 105 (2000)

    ADS  Google Scholar 

  55. C J Olsonet al, Phys. Rev. Lett. 87, 177002 (2001)

    Article  ADS  Google Scholar 

  56. J S Andradeet al, Phys. Rev. Lett. 79, 3901 (1997)

    Article  ADS  Google Scholar 

  57. C C Lundstromet al, Science 270, 1958 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S.S., Goldberg, S., Myasoedov, Y. et al. Melting of heterogeneous vortex matter: The vortex ‘nanoliquid’. Pramana - J Phys 66, 43–54 (2006). https://doi.org/10.1007/BF02704936

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704936

Keywords

PACS Nos

Navigation