Skip to main content
Log in

A simple empirical optical model for simulating light attenuation variability in a partially mixed estuary

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Representation of the subsurface light field is a crucial component of pelagic ecosystem and water quality models. Modeling the light field in estuaries is a particularly complicated problem due to the significant influence of high concentrations of dissolved and particulate matter that are derived from both terrestrial and estuarine sources. The goal of this study was to develop a relatively simple but effective way to model light attenuation variability in a turbuid estuary (Chesapeake Bay, United States) in a coupled physical-biological model. We adopted a simple, nonspectral empirical approach. Surface water quality data (salinity was used as a proxy of chromophoric dissolved organic matter [CDOM]) and light measurements from the Chesapeake Bay Program were used to determine the absorption coefficients in a linear attenuation model using regression methods. This model predicts Kc (specific attenuation due to phytoplankton/chlorophylla [chla]), Kt (specific attenuation due to total suspended solids), and Ks (a function of specific attenuation coefficients of CDOM in relation to salinity). The Bay-wide fitted relation between the light attenuation coefficient and water quality concentrations gives generally good estimates of total light attenuation, Kd. The direct inclusion of salinity in the relationship has one disadvantage: it can yield negative values for Kd at high salinities. We developed two separate models for two different salinity regimes. This approach, in addition to solving the negative Kd problem, also accounts for some changes in specific light absorption by chla, seston (nonphytoplankton particulate matter), and CDOM that apparently occur in different salinity regimes in Chesapeake Bay. The resulting model predicts the statistical characteristics (i.e., the mean and variance) of Kd quite accurately in most regions of Chesapeake Bay. We also discuss in this paper the feasibility and caveats of using Kd converted from Secchi depth in the empirical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anning, T., H. L. MacIntyre, S. M. Pratt, P. J. Sammes, S. Gibb, andR. J. Geider. 2000. Photoacclimation in the marine diatomSkeletonema costatum.Limnology and Oceanography 45:1807–1817.

    Article  Google Scholar 

  • Arrigo, K. R. andC. W. Sullivan. 1994. A high resolution biooptical model of microalgal growth: Tests using sea-ice algal community time-series data.Limnology and Oceanography 39:609–631.

    CAS  Google Scholar 

  • Baker, E. T., D. A. Tennant, R. A. Feely, G. T. Lebon, andS. L. Walker. 2001. Field and laboratory studies on the effect of particle size and composition on optical backscattering measurements in hydrothermal plumes.Deep-Sea Research Part I 48:593–604.

    Article  CAS  Google Scholar 

  • Bowers, D. G., D. Evans, D. N. Thomas, K. Ellis, andP. J. Le B. Williams. 2004. Interpreting the color of an estuary.Estuarine Coastal and Shelf Science 59:13–20.

    Article  CAS  Google Scholar 

  • Ciotti, A. M., M. R. Lewis, andJ. J. Cullen. 2002. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient.Limnology and Oceanography 47:404–417.

    CAS  Google Scholar 

  • Cullen, J. J. andM. R. Lewis. 1988. The kinetics of algal photoadaptation in the context of vertical mixing.Journal of Plankton Research 10:1039–1063.

    Article  Google Scholar 

  • Dieguez, M. G., andJ. J. Gilbert. 2003. Predation by Buenoa Macrotibialis (Insecta, Hemiptera) on zooplankton: Effect of light on selection and consumption of prey.Journal of Plankton Research 25:759–769.

    Article  Google Scholar 

  • Gal, G., E. R. Loew, L. G. Rudstam, andA. M. Mohammadian. 1999. Light and diel vertical migration: Spectral sensitivity and light avoidance byMysis relicta.Canadian Journal of Fisheries and Aquatic Sciences 56:311–322.

    Article  Google Scholar 

  • Gallegos, C. L. 2001. Calculating optical water quality targets to restore and protect submerged aquatic vegetation: Overcoming problems in partitioning the diffuse attenuation coefficient for photosynthetically active radiation.Estuaries 24:381–397.

    Article  CAS  Google Scholar 

  • Gallegos, C. L., D. L. Correll, andJ. W. Pierce. 1990. Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary.Limnology and Oceanography 35:1486–1502.

    Google Scholar 

  • Gallegos, C. L. andK. A. Moore. 2000. Factors contributing to water-column light attenuation, p. 16–27.In R. A. Vatiuk, P. Bergstrom, W. M. Kemp, E. Koch, L. Murray, J. C. Stevenson, R. Bartleson, V. Carter, N. B. Rybicki, J. M. Landwehr, C. Ballegos, L. Karrh, M. Naylor, D. Wilcox, K. A. Moore, S. Ailstock, and M. Teichberg (eds.), Chesapeake Bay Submerged Aquatic Vegetation Water Quality and Habitat-based Requirements and Restoration Targets: A Second Technical Synthesis. U.S. Environmental Protection Agency, Chesapeake Bay Program, Annapolis, Maryland.

    Google Scholar 

  • Graham, W. M., F. Pages, andW. M. Hammer. 2001. A physical context for gelatinous zooplankton aggregations: A review.Hydrobiologia 451:199–212.

    Article  Google Scholar 

  • Harding, L. W. 1994. Long-term trends in the distribution of phytoplankton in Chesapeake Bay: Roles of light, nutrients, and stream flow,Marine Ecology Progress Series 104:267–291.

    Article  Google Scholar 

  • Jones, E. J. andR. J. Gowen. 1990. Influence of stratification and irradiance regime on summer phytoplankton composition in coastal and shelf seas of the British Isles.Estuarine Coastal and Shelf Science 30:557–567.

    Article  Google Scholar 

  • Kirk, J. T. O. 1994. Light and Photosynthesis in Aquatic Ecosystems, 2nd edition. Cambridge University Press, Cambridge, Maryland.

    Google Scholar 

  • Koenings, J. P. andJ. A. Edmundon. 1991. Secchi disk and photometer estimates of light regimes in Alaskan lakes—Effects of yellow color and turbidity.Limnology and Oceanography 36:91–105.

    Google Scholar 

  • Lohrenz, S. E., A. D. Weidemann, andM. Tuel. 2003. Phytoplankton spectral absorption as influenced by community size structure and pigment composition.Journal of Plankton Research 25:35–61.

    Article  CAS  Google Scholar 

  • McMahon, T. G., R. C. T. Raine, T. Fast, andJ. W. Patching. 1992. Phytoplankton biomass, light attenuation and mixing in the Shannon Estuary, Ireland, light attenuation and mixing in the Shannon Estuary, Ireland.Journal of Marine Biological Association of the United Kingdom 72:709–720.

    Article  Google Scholar 

  • Monahan, E. C. andM. J. Pybus. 1978. Colour, ultraviolet absorbance and salinity of the surface waters off the west coast of Ireland.Nature 274:782–784.

    Article  CAS  Google Scholar 

  • Parsons, T. R., M. Takahashi, andB. Hargrave. 1984. Biological Oceanographic Processes, 3rd edition. Pergamon Press Inc., New York.

    Google Scholar 

  • Platt, T. andS. Sathyendranath. 1988. Ocean primary production: Estimation by remote sensing at local and regional scales.Science 241:1613–1620.

    Article  CAS  Google Scholar 

  • Richardson, M. J. 1987. Particle-size, light-scattering, and composition of suspended particulate matter in the North Atlantic.Deep-Sea Research Part A 34:1301–1329.

    Article  Google Scholar 

  • Rijstenbil, J. W. 1987. Phytoplankton composition of stagnant and tidal ecosystems in relation to salinity, nutrients, light, and turbulence.Netherlands Journal of Sea Research 21:113–123.

    Article  Google Scholar 

  • Risovic, D. 2002. Effect of suspended particulate-size, distribution on the backscattering ratio in the remote sensing of seawater.Applied Optics 41:7092–7101.

    Article  Google Scholar 

  • Rochelle-Newall, E. J. andT. R. Fisher. 2002. Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay.Marine Chemistry 77:23–41.

    Article  CAS  Google Scholar 

  • Rosner, B. 1995. Fundamentals of Biostatistics. 4th edition. Duxbury Press, Pacific Grove, California.

    Google Scholar 

  • Sathyendranath, S. andT. Platt, 1989a. Remote sensing of oceanic primary production: Computations using a spectral model.Deep-Sea Research 36:431–453.

    Article  CAS  Google Scholar 

  • Sathyendranath, S. andT. Platt. 1989b. Computation of aquatic primary production: Extended formalism to include effects of angular and spectral distribution of light.Limnology and Oceanography 34:188–198.

    Google Scholar 

  • Siegel, D. A., S. Maritorena, N. B. Nelson, D. A. Hansell, and M. Lorenzi-Kayser. 2002. Global distribution and dynamics of colored dissolved and detrital organic materials.Journal of Geophysical Research-Oceans 107. Art. No. 3228.

  • Smith, R. C., B. B. Prezelin, R. R. Bidigare, andK. S. Baker. 1989. Bio-optical modeling of photosynthetic production in coastal waters.Limnology and Oceanography 34:1524–1544.

    Article  CAS  Google Scholar 

  • Smith, Jr.,W. O. 1982. The relative importance of chlorophyll, dissolved and particulate material, and seawater to the vertical extinction of light.Estuarine Coastal and Shelf Science 15:459–465.

    Article  Google Scholar 

  • Stefan, H. G., J. J. Cardoni, F. R. Schiebe, andC. M. Cooper. 1983. Model of light penetration in a turbid lake.Water Resources Research 19:109–120.

    Article  Google Scholar 

  • Stuart, V., S. Sathyendranath, T. Platt, H. Maass, andB. D. Irwin. 1998. Pigments and species composition of natural phytoplankton populations: Effects on the absorption spectra.Journal of Plankton Research 20:187–217.

    Article  CAS  Google Scholar 

  • Wang, M., D. R. Lyzenga, andV. V. Klemas. 1996. Measurement of optical properties in the Delaware Estuary.Journal of Coastal Research 12:211–228.

    Google Scholar 

  • Weisberg, S. 1985. Applied Linear Regression, 2nd edition. John Wiley and Sons, Inc., Indianapolis, Indiana.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangtao Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Hood, R.R. & Chao, SY. A simple empirical optical model for simulating light attenuation variability in a partially mixed estuary. Estuaries 28, 572–580 (2005). https://doi.org/10.1007/BF02696068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02696068

Keywords

Navigation