Skip to main content
Log in

The influence of sulfides on soluble organic-Fe(III) in anoxic sediment porewaters

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Solid and colloidal iron oxides are commonly involved in early diagenesis. More readily available soluble Fe(III) should accelerate the cycling of iron (Fe) and sulfur (S) in sediments. Experiments with synthetic solutions (Taillefert et al. 2000) showed that soluble Fe(III) (i.e., <50 nm diameter) reacts at a mercury voltammetric electrode at circumneutral pH if it is complexed by an organic ligand. The reactivity of soluble organic-Fe(III) with sulfide is greatly increased compared to its solid equivalent (e.g., amorphous hydrous iron oxides or goethite). We report here data from two different creeks of the Hackensack Meadowlands District (New Jersey) collected with solid state Au/Hg voltammetric microelectrodes and other conventional techniques, which confirm the existence of soluble organic-Fe(III) in sediments and its interaction with sulfide. Chemical profiles in these two anoxic sediments show the interaction between iron and sulfur during early diagenesis. Soluble organic-Fe(III) and Fe(II) are dominant in a creek where sulfide is negligible. This dominance suggests that the reductive dissolution of iron oxides goes through the dissolution of solid Fe(III), then reduction to Fe(II), or that soluble organic-Fe(III) is formed by chemical or microbial oxidation of organic-Fe(II) complexes. In a creek sediment where sulfide occurs in significant concentration, the reductive dissolution of Fe(III) is followed by formation of FeS(aq), which further precipitates. Dissolved sulfide may influence the fate of soluble organic-Fe(III), but the pH may be the key variable behind this process. The high reactivity of soluble organic-Fe(III) and its mobility may result in the shifting of local reactions, at depths where other electron acceptors are used. These data also suggest that estuarine and coastal sediments may not always be at steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Amirbahman, A., L. Sigg, andU. von Gunten. 1997. Reductive dissolution of Fe(III) (Hydr)oxides by cysteine: Kinetics and mechanism.Journal of Colloid and Interface Science 194:194–206.

    Article  CAS  Google Scholar 

  • Arnold, R. G., T. J. DiChristina, andM. R. Hoffmann. 1986. Inhibitor studies of dissimilative Fe(III) reduction byPseudomonas sp. strain 200 (“Pseudomonas ferrireductans”).Applied and Environmental Microbiology 52:281–289.

    CAS  Google Scholar 

  • Arnold, R. G., T. J. DiChristina, andM. R. Hoffmann. 1988. Reductive dissolution of Fe(III) oxides byPseudomonas sp. 200.Biotechnology and Bioengineering 32:1081–1096.

    Article  CAS  Google Scholar 

  • Bondietti, G., J. Sinniger, andW. Stumm. 1993. The reactivity of Fe(III) (hydr)oxides: Effects of ligands in inhibiting the dissolution.Colloids and Surfaces 79:157–174.

    Article  Google Scholar 

  • Brendel, P. J. andG. W. Luther, III. 1995. Development of a gold amalgam voltametric microelectrode for the determination of dissolved Fe, Mn, O2, and S(-II) in pore waters of marine and freshwater sediments.Environmental Science and Technology 29:751–761.

    Article  CAS  Google Scholar 

  • Bull, D. C. andM. Taillefert. 2001. Seasonal and topographic variations in porewaters of a southeastern USA salt marsh as revealed by voltammetric profiling.Geochemical Transactions 13:1–8.

    Google Scholar 

  • Canfield, D. E. 1989. Reactive iron in marine sediments.Geochimica et Cosmochimica Acta 53:619–632.

    Article  CAS  Google Scholar 

  • Cutter, G. A. andD. J. Velinsky. 1988. Temporal variations of sedimentary sulfur in a Delaware salt marsh.Marine Chemistry 23:311–327.

    Article  CAS  Google Scholar 

  • Davison, W., J. Buffle, andR. De Vitre. 1988. Direct polarographic determination of O2, Fe(II), Mn(II), S(-II), and related species in anoxic waters.Pure Applied Chemistry 60:1535–1543.

    Article  CAS  Google Scholar 

  • Deng, Y. andW. Stumm. 1994. Reactivity of aquatic iron(III) oxyhydroxides—Implications for redox cycling of iron in natural waters.Applied Geochemistry 9:23–36.

    Article  CAS  Google Scholar 

  • Dollhopf, M. E., K. H. Nealson, D. M. Simon, andG. W. Luther, III. 2000. Kinetics of Fe(III) and Mn(IV) reduction by the Black Sea strain ofShewanella putrefaciens using in situ solid state voltametric Au/Hg electrodes.Marine Chemistry 70:171–180.

    Article  CAS  Google Scholar 

  • Dos Santos Afonso, M. andW. Stumm. 1992. Reductive disolution of iron(III) (hydr)oxides by hydrogen sulfide.Langmuir 8:1671–1675.

    Article  CAS  Google Scholar 

  • Eckerrot, A. andK. Pettersson. 1993. Pore water phosphorous and iron concentrations in a shallow, eutrophic lake—Indications of bacterial regulation.Hydrobiology 253:165–177.

    Article  CAS  Google Scholar 

  • Ferdelman, T. G., T. M. Church, andG. W. Luther, III. 1991. Sulfur enrichment of humic substances in a Delaware salt marsh sediment core.Geochimica et Cosmochimica Acta 55:979–988.

    Article  CAS  Google Scholar 

  • Henneke, E., G. W. Luther, III, andG. J. de Lange. 1991. Determination of inorganic sulphur speciation with polarographic techniques: Some preliminary results for recent hypersaline anoxic sediments.Marine Geology 100:115–123.

    Article  CAS  Google Scholar 

  • Huettel, M., W. Ziebis, S. Forster, andG. W. Luther, III. 1998. Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments.Geochimica et Cosmochimica Acta 62:613–631.

    Article  CAS  Google Scholar 

  • Kosta, J. E. andG. W. Luther, III. 1994. Partitioning and speciation of solid phase iron in saltmarsh sediments.Geochimica et Cosmochimica Acta 58:1701–1710.

    Article  Google Scholar 

  • Lakind, J. S. andA. T. Stone. 1989. Reductive dissolution of goethite by phenolic reductants.Geochimica et Cosmochimica Acta 53:961–971.

    Article  CAS  Google Scholar 

  • Liang, L., J. F. McCarthy, L. W. Jolley, J. A. McNabb, andT. L. Melhorn. 1993. Iron dynamics: Transformation of Fe(II)/Fe(III) during injection of natural organic matter in a sandy aquifer.Geochimica et Cosmochimica Acta 57:1987–1999.

    Article  CAS  Google Scholar 

  • Lord, III,C. J. andT. M. Church. 1983. The geochemistry of salt marshes: Sedimentary ion diffusion, sulfate reduction, and pyritization.Geochimica et Cosmochimica Acta 47:1381–1391.

    Article  CAS  Google Scholar 

  • Lovley, D. R. andE. J. P. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments.Applied Environmental Microbiology 51:683–689.

    CAS  Google Scholar 

  • Lovley, D. R. andJ. C. Woodward. 1996. Mechanisms for chelator simulation of microbial Fe(III)-oxide reduction.Chemical Geology 132:19–24.

    Article  CAS  Google Scholar 

  • Lowe, K. L., T. J. DiChristina, A. N. Roychoudhury, andP. Van Cappellen. 2000. Microbiological and geochemical characterization of microbial Fe(III) reduction in salt marsh sediments.Geomicrobiology Journal 17:163–178.

    Article  CAS  Google Scholar 

  • Luther, III,G. W., P. J. Brendel, B. L. Lewis, B. Sundby, L. Lefrançois, N. Silverberg, andD. B. Nuzzio. 1998. Simultaneous measurement of O2, Mn, Fe, I, and S(-II) in marine pore waters with a solid-state voltametric microelectrode.Limnology and Oceanography 43:325–333.

    Article  CAS  Google Scholar 

  • Luther, III,G. W. andT. M. Church. 1988. Seasonal cycling of sulfur and iron in pore waters of a Delaware salt marsh.Marine Chemistry 23:295–309.

    Article  CAS  Google Scholar 

  • Luther, III.G. W., T. Ferdelman, andE. Tsamakis. 1988. Evidence suggesting anaerobic oxidation of the bisulfide ion in Chesapeake Bay.Estuaries 11:281–285.

    Article  CAS  Google Scholar 

  • Luther, III,G. W., J. E. Køstka, T. M. Church, B. Sulzberger, andW. Stumm. 1992. Seasonal iron cycling in the salt-marsh sedimentary environment: The importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively.Marine Chemistry 40:81–103.

    Article  CAS  Google Scholar 

  • Luther, III,G. W., C. E. Reimers, D. B. Nuzzio, andD. Lovalvo. 1999. In situ deployment of voltametric, potentiometric, and amperometric microelectrodes from a ROV to determine dissolved O2, Mn, Fe, S(-2), and pH in pore waters.Environmental Science and Technology 33:4352–4356.

    Article  CAS  Google Scholar 

  • Luther, III,G. W., P. A. Shellenbarger, andP. J. Brendel. 1996. Dissolved organic Fe(III) and Fe(II) complexes in saltmarsh porewaters.Geochimica et Cosmochimica Acta 60:951–960.

    Article  CAS  Google Scholar 

  • Millero, F. J. 1986. The thermodynamics and kinetics of the hydrogen sulfide system in natural waters.Marine Chemistry 18: 121–147.

    Article  CAS  Google Scholar 

  • Nambrini, G., J. Buffle, andW. Heardi. 1976. Voltammetric behavior of iron(III) hydrolyzed solutions and characterization of the reducible species.Journal of Colloids and Interface Science 57:327–336.

    Article  Google Scholar 

  • Nowack, B. andL. Sigg. 1996. Adsorption of EDTA and metal-EDTA complexes onto goethite.Journal of Colloids and Interface Science 177:106–121.

    Article  CAS  Google Scholar 

  • Pronk, J. T. andD. B. Johnson. 1992. Oxidation and reduction of iron by acidophilic bacteria.Geomicrobiology Journal 10:153–171.

    Article  CAS  Google Scholar 

  • Pyzik, A. J. andS. E. Sommer. 1981. Sedimentary iron monosulfides: Kinetics and mechanism of formation.Geochimica et Cosmochimica Acta 45:687–698.

    Article  CAS  Google Scholar 

  • Raiswell, R., F. Buckley, R. A. Berner, andT. F. Anderson. 1988. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation.Journal of Sedimentology and Petrology 58:812–819.

    CAS  Google Scholar 

  • Rickard, D. T. 1974. Kinetics and mechanism of the sulfidation of goethite.American Journal of Science 274:941–952.

    Article  CAS  Google Scholar 

  • Rickard, D. 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation.Geochimica et Cosmochimica Acta 61:115–134.

    Article  CAS  Google Scholar 

  • Rickard, D. andG. W. Luther, III. 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The mechanism.Geochimica et Cosmochimica Acta 61:135–147.

    Article  CAS  Google Scholar 

  • Skoog, D. A. andJ. L. Leary. 1992. Principles of instrumental analysis, 4th edition. Saunders College Publishing, Fort Worth, Texas.

    Google Scholar 

  • Sorensen, J. andB. B. Jorgensen. 1987. Early diagenesis in sediments from Danish coastal waters: Microbial activity and Mn−Fe−S geochemistry.Geochimica et Cosmochimica Acta 51:1583–1590.

    Article  Google Scholar 

  • Stookey, L. L. 1970. Ferrozine: a new spectrophotometric reagent for iron.Analytical Chemistry 42:779–781.

    Article  CAS  Google Scholar 

  • Straub, K. L., M. Benz, B. Shink, andF. Widdel. 1996. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron.Applied and Environmental Microbiology 62:1458–1460.

    CAS  Google Scholar 

  • Stumm, W. 1997. Reactivity at the mineral-water interface: Dissolution and inhibition.Colloids and Surfaces A: Physicochemical and Engineering Aspects 120:143–166.

    Article  CAS  Google Scholar 

  • Sulzberger, B., D. Suter, C. Siffert, S. Banwart, andW. Stumm. 1989. Dissolution of Fe(III) (hydr)oxides in natural waters: Laboratory assessment on the kinetics controlled by surface coordination.Marine Chemistry 28:127–144.

    Article  CAS  Google Scholar 

  • Suter, D., S. Banwart, andW. Stumm. 1991. Dissolution of hydrous iron(III) oxides by reductive mechanisms.Langmuir 7: 809–813.

    Article  CAS  Google Scholar 

  • Taillefert, M., A. B. Bono, andG. W. Luther, III. 2000. Reactivity of freshly formed Fe(III) in synthetic solutions and (pore)waters: Voltametric evidence of an aging process.Environmental Science and Technology 34:2169–2177.

    Article  CAS  Google Scholar 

  • Taillefert, M., T. F. Rozan, B. T. Glazer, J. Herszage, andR. E. Trouwborst, andG. W. Luther, III. 2002. Seasonal variations of soluble organic-Fe(III) in sediment porewaters as revealed by voltametric microelectrodes, p. 247–264.In M. Taillefert and T. F. Rozan (eds.), Environmental Electrochemistry: Analyses of Trace Element Bigeochemistry, Volume 811. American Chemical Society, Washington D.C.

    Google Scholar 

  • Thampdrup, B., H. Fossing, andB. B. Jorgensen. 1994. Manganese, iron, and sulfur, cycling in a coastal marine sediment.Geochimica et Cosmochimica Acta 58:5115–5129.

    Article  Google Scholar 

  • Theberge, S. M. andG. W. Luther, III. 1997. Determination of the electrochemical properties of a soluble aqueous FeS species present in sulfidic solutions.Aquatic Geochemistry 3:191–211.

    Article  CAS  Google Scholar 

  • Von Gunten, U. andW. Schneider. 1991. Primary products of the oxygenation of iron(II) at an oxic-anoxic boundary: Nucleation, aggregation, and aging.Journal of Colloids and Interface Science 145:127–139.

    Article  Google Scholar 

  • Xu, K., S. C. Dexter, andG. W. Luther, III. 1997. Development of voltametric microelectrodes for use in corrosion studies.Corrosion 300:1–18.

    Google Scholar 

  • Zinder, B., G. Furrer, andW. Stumm. 1986. The coordination chemistry of weathering: II. Dissolution of Fe(III) oxides.Geochimica et Cosmochimica Acta 50:1861–1869.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Taillefert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taillefert, M., Hover, V.C., Rozan, T.F. et al. The influence of sulfides on soluble organic-Fe(III) in anoxic sediment porewaters. Estuaries 25, 1088–1096 (2002). https://doi.org/10.1007/BF02692206

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02692206

Keywords

Navigation