Skip to main content
Log in

Combustion synthesis in the Ti-C-Ni-Mo system: Part I. Micromechanisms

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Combustion-wave arresting experiments were conducted on Ti-C-Ni and Ti-C-Ni-Mo powder mixtures. The reactant powder mixtures were placed within a conical hole machined in a Cu block. The reaction was initiated at the base of the cone and proceeded down the cone axis, toward the apex, until the heat loss to the Cu block was sufficient to arrest the reaction. This enabled the postreaction characterization of the three distinct regions of the combustion wave: unreacted, partially reacted, and fully reacted. The unreacted region is characterized by removal of a surface scale on the Ti particles and Ti α β solid-state phase transformation. The partially reacted region is characterized by a number of physical processes and a distinct interface with the unreacted region. These processes include the formation of Ti-Ni phases, Ti-Ni melt, TiC, layer on the C particles, and TiCx spherules. The TiCx layer is composed of coarsening TiCx precipitates which are ejected into the progressively Ni-rich Ti-Ni melt. These TiCx spherules vary in size with apparent diameters of approximately 0.2 to 1 μm. No distinct interface exists between the partially and fully reacted regions. Final consumption of C is followed by TiCx spherule growth by combined Ostwald ripening and grain coalescence mechanisms resulting in an apparent diameter of 2.5 μm. The addition of Mo does not significantly affect the processes occurring within the partially reacted region. It is apparent that Mo enters into solution with the Ti-Ni melt at a rate much slower than that characteristic of the other processes(i.e., Ti-Ni melt mixing or Ti-C reaction).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z.A. Munir and U. Anselmi-Tamburini:Mater. hSci. Rep., 1989, vol. 3, pp. 277–365.

    Article  CAS  Google Scholar 

  2. H.C. Yi and J.J. Moore:J. Mater. Sci., 1990, vol. 25, pp. 1159–68.

    CAS  Google Scholar 

  3. A.G. Merzhanov: inCombustion and Plasma Synthesis of High Temperature Materials, Z.A. Munir and J.B. Holt, eds., VCH Publishers, New York, NY, 1990, pp. 1–53.

    Google Scholar 

  4. J. Eng. Phys. Thermophys., 1993, vol. 63, pp. 1057–1170.

  5. A.A. Zenin, A.G. Merzhanov, and G.A. Nersisyan:Comb. Expl. Shock Waves, 1981, vol. 17, pp. 63–71.

    Article  Google Scholar 

  6. T. Boddington, P.G. Laye, J. Tipping, and D. Whalley:Comb. Flame, 1986, vol. 63, pp. 359–68.

    Article  CAS  Google Scholar 

  7. S.D. Dunmead, Z.A. Munir, and J.B. Holt:J. Am. Ceram. Soc., 1992, vol. 75, pp. 180–88.

    Article  CAS  Google Scholar 

  8. E.A. Levashov, Yu. V. Bogatov, and A.A. Milovidov:Combust. Explos. Shock Waves, 1991, vol. 27, pp. 83–88.

    Article  Google Scholar 

  9. S.C. Deevi:J. Mater. Sci., 1991, vol. 26, pp. 2662–70.

    Article  CAS  Google Scholar 

  10. V.V. Aleksandrov, M.A. Korchagin, B.P. Tolochko, and M.A. Sheromov:Comb. Expl. Shock Waves, 1984, vol. 19, pp. 430–31.

    Article  Google Scholar 

  11. J. Wong, E.M. Larson, J.B. Holt, P.A. Waide, B. Rupp, and R. Frahm:Science, 1990, vol. 249, pp. 1406–09.

    Article  CAS  Google Scholar 

  12. M.A. Korchagin and V.V. Aleksandrov:Comb. Expl. Shock Waves, 1981, vol. 17, pp. 58–63.

    Article  Google Scholar 

  13. V.A. Shugaev, A.S. Rogachev, and V.I. Ponomarev:Int. J. SHS, 1992, vol. 1, pp. 72–77.

    CAS  Google Scholar 

  14. V.V. Aleksandrov and M.A. Korchagin:Comb. Expl. Shock Waves, 1987, vol. 23, pp. 557–64.

    Article  Google Scholar 

  15. B.M. Vol’ne and V.V. Evstigneev:Comb. Expl. Shock Waves, 1992, vol. 28, pp. 173–78.

    Article  Google Scholar 

  16. A.S. Mukasyan and I.P. Borovinskaya:Int. J. SHS, 1992, vol. 1, pp. 55–63.

    CAS  Google Scholar 

  17. A.G. Merzhanov and A.S. Rogachev:Pure Appl. Chem., 1992, vol. 64, pp. 941–53.

    CAS  Google Scholar 

  18. V.M. Shkiro, V.N. Doroshin, and I.P. Borovinskaya:Comb. Expl. Shock Waves, 1980, vol. 16, pp. 370–74.

    Article  Google Scholar 

  19. A.S. Rogachev, A.S. Mukas’yan, and A.G. Merzhanov:Dokl. Akad. Nauk SSSR, 1987, vol. 297, pp. 1240–43.

    Google Scholar 

  20. A.S. Rogachev, V.M. Shkiro, I.D. Chausskaya, and M.V. Shvetsov:Comb. Expl. Shock Waves, 1988, vol. 24, pp. 720–26.

    Article  Google Scholar 

  21. A.G. Merzhanov, A.S. Rogachev, A.S. Mukas’yan, and B.M. Khusid:Comb. Expl. Shock Waves, 1990, vol. 26, pp. 92–102.

    Article  Google Scholar 

  22. S.D. Dunmead, D.W. Readey, C.E. Semler, and J.B. Holt:J. Am. Ceram. Soc., 1989, vol. 72, pp. 2318–24.

    Article  CAS  Google Scholar 

  23. J.C. LaSalvia and M.A. Meyers:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 0000–00.

    Google Scholar 

  24. P. Schwarzhopf, R. Kieffer, W. Leszynski, and F. Benesovsky:Refractory Hard Metals, MacMillan Company, New York, NY, 1953.

    Google Scholar 

  25. E.K. Storms:The Refractory Carbides, Academic Press, New York, NY, 1967.

    Google Scholar 

  26. Metals Handbook, 10th ed., vol. 2,Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM INTERNATIONAL, Metals Park, OH, 1990.

  27. Micron Metals Inc., Salt Lake City, UT.

  28. V.N. Bloshenko, V.A. Bokii, and I.P. Borovinskaya:Comb. Expl. Shock Waves, 1984, vol. 20, pp. 673–75.

    Article  Google Scholar 

  29. V.N. Bloshenko, V.A. Bokii, I.P. Borovinskaya, and A.G. Merzhanov:Comb. Expl. Shock Waves, 1984, vol. 20, pp. 676–80.

    Article  Google Scholar 

  30. V.N. Bloshenko, V.A. Bokii, and I.P. Borovinskaya:Comb. Expl. Shock Waves, 1985, vol. 21, pp. 88–92.

    Article  Google Scholar 

  31. Metal Hydrides, W.M. Mueller, J.P. Blackledge, and G.G. Libowitz, eds., Academic Press, New York, NY, 1968, pp. 338–46.

    Google Scholar 

  32. L.J. Kecskes and A. Niiler:J. Am. Ceram. Soc., 1989, vol. 72, pp. 655–61.

    Article  CAS  Google Scholar 

  33. A.K. Filonenko and V.I. Vershinnikov:Sov. J. Chem. Phys., 1985, vol. 3, pp. 675–82.

    Google Scholar 

  34. Titanium and Titanium Alloys, M.J. Donachie, Jr., ed., ASM, Metals Park, OH, 1982.

    Google Scholar 

  35. W.F. Henshaw, A. Niiler, and T. Leete: Report No. ARBRL-MR-03354, Aberdeen Proving Ground, MD, Apr. 1984.

  36. R.M. German:Liquid Phase Sintering, Plenum Press, New York, NY, 1985.

    Google Scholar 

  37. Cermets, J.R. Tinklepaugh and W.B. Crandall, eds., Reinhold, New York, NY, 1960.

    Google Scholar 

  38. V.M. Shkiro and I.P. Borovinskaya:Comb. Expl. Shock Waves, 1976, vol. 12, pp. 828–31.

    Article  Google Scholar 

  39. A.I. Kirdyashkin, Yu. M. Maksimov, and A.G. Merzhanov:Comb. Expl. Shock Waves, 1981, vol. 17, pp. 591–95.

    Google Scholar 

  40. J.C. LaSalvia, M.A. Meyers, and D.K. Kim:J. Mater. Synthesis and Processing, 1994, vol. 2, pp. 255–74.

    CAS  Google Scholar 

  41. J.C. LaSalvia: Ph.D. Dissertation, University of California, San Diego, CA, 1994.

    Google Scholar 

  42. T. Kottke, L.J. Kecskes, and A. Niiler: Ballistic Research Laboratory Memorandum Reports BRL-MR-3793 and BRL-MR-3574, Aberdeen Proving Ground, MD, Dec. 1989.

  43. V.N. Eremenko, T. Ya. Velikanova, and S.V. Shabanova: inRefractory Carbides, G.V. Samsonov, ed., Consultants Bureau, New York, NY, 1974, pp. 143–55 (English translation).

    Google Scholar 

  44. M.W. Chase, Jr., C.A. Davies, J.R. Downey Jr., DJ. Frurip, R.A. McDonald, and A.N. Syverud:JANAF Thermochemical Tables, 3rd ed., part I,Al-Co;J. Phys. Chem. Ref. Data, 1985, vol. 14, suppl. 1, American Chemical Society and American Institute of Physics for the National Bureau of Standards, 1986.

  45. Thermochemical Properties of Inorganic Substances: II, 2nd ed., O. Knacke, O. Kubaschewski, and K. Hesselman, eds., Springer-Verlag, New York, NY, 1991.

    Google Scholar 

  46. B.V. Novozhilov:Dokl. Acad. Sci. USSR, Phys. Chem., 1961, vol. 141, pp. 836–38, (English translation).

    Google Scholar 

  47. E.I. Maksimov, A.G. Merzhanov, and V.M. Shkiro:Combust. Explos. Shock Waves, 1965, vol. 1, pp. 15–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Materials Research Scientist with the Department of Applied Mechanics and Engineering Sciences, University of California

Formerly Undergraduate Research Associate with the Department of Applied Mechanics and Engineering Sciences, University of California

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaSalvia, J.C., Kim, D.K., Lipsett, R.A. et al. Combustion synthesis in the Ti-C-Ni-Mo system: Part I. Micromechanisms. Metall Mater Trans A 26, 3001–3009 (1995). https://doi.org/10.1007/BF02669656

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669656

Keywords

Navigation