Skip to main content
Log in

The thermal stability of lattice mismatched InGaAs grown on patterned GaAs

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Patterning and etching substrates into mesas separated by trenches before the growth of mismatched (by about 1% or less) epitaxial layers considerably reduces the interface misfit dislocation density when the layer thickness exceeds the critical thickness. Such films are in a metastable state, since misfit dislocations allow the epitaxial layers to relax to an in-plane lattice parameter closer to its strain-free value. Thermal annealing (from 600 to 850° C) has been used to study the stability of these structures to explore the properties of the misfit dislocations and their formation. The misfit dislocation density was determined by counting the dark line defects at the InGaAs/GaAs interface, imaged by scanning cathodoluminescence. InGaAs epitaxial layers grown on patterned GaAs substrates by organometallic chemical vapor deposition possess a very small as-grown misfit dislocation density, and even after severe annealing for up to 300 sec at 800° C the defect density is less than 1500 cm−1 for a In0.04Ga0.96As, 300 nm thick layer (about 25% of the dislocation density found in unpatterned material that has not been annealed). The misfit dislocation nucleation properties of the material are found to depend on the trench depth; samples made with deeper (greater than 0.5 μm) trenches are more stable. Molecular beam epitaxially grown layers are much less stable than the above material; misfit dislocations nucleate in much greater numbers than in comparable organo-metallic chemical vapor deposited material at all of the temperatures studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Matthews, J. Vac. Sci. Technol.12, 126 (1975).

    Article  CAS  Google Scholar 

  2. E. A. Fitzgerald, G. P. Watson, R. E. Proano, D. G. Ast, P. D. Kirchner, G. D. Pettit and J. M. Woodall, J. Appl. Phys.65, 2220 (1989).

    Article  CAS  Google Scholar 

  3. G. P. Watson, D. G. Ast, T. J. Anderson, and Y. Hayakawa, Appl. Phys. Lett.58, 2517 (1991).

    Article  CAS  Google Scholar 

  4. G. P. Watson, D. G. Ast, T. J. Anderson, Y. Hayakawa and B. Pathangey, unpublished.

  5. B. G. Yacobi and D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids (Plenum Press, New York, 1990), p. 49.

    Google Scholar 

  6. D. W. Shaw, J. Electrochem. Soc.128, 874 (1981).

    Article  CAS  Google Scholar 

  7. G. P. Watson, M. O. Thompson, D. G. Ast, A. Fischer-Colbrie and J. Miller, J. Electron. Mater.19, 975 (1990).

    Article  Google Scholar 

  8. K. L. Kavanagh, M. A. Capano, L. W. Hobbs, J. C. Barbour, P. M. J. Maree, W. Schaff, J. W. Mayer, D. Pettit, J. M. Wood all, J. A. Stroscio and R. M. Feenstra, J. Appl. Phys.,64, 4843 (1988).

    Article  CAS  Google Scholar 

  9. A. V. Drigo, A. Aydinli, A. Camera, F. Genova, C. Rigo, C. Ferrari, P. Franzosi and G. Salviati, J. Appl. Phys.66, 1975 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, G.P., Ast, D.G., Anderson, T.J. et al. The thermal stability of lattice mismatched InGaAs grown on patterned GaAs. J. Electron. Mater. 20, 703–708 (1991). https://doi.org/10.1007/BF02665955

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665955

Key words

Navigation