Skip to main content
Log in

Photoluminescence study of ZnO varistor stability

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Photoluminescence (PL) measurements were carried out on commercial ZnO varistor samples that were electrically stressed and/or annealed at different temperatures. Changes in the intensity of green and yellow luminescence centers were studied as a function of annealing treatment. It was found that the ZnO luminescence (green and yellow) decrease with increase in annealing temperature, reach a minimum at 700°C, and increase again beyond 800°C. Furthermore, these green and yellow luminescence bands observed in the PL spectra are quenched in the ZnO varistor samples, compared to pure ZnO. In an electrically stressed ZnO varistor sample, the luminescence intensity was found to be higher compared to the as-sintered varistor sample. Annealing of the stressed varistor sample resulted in a decrease of the luminescence intensity. These PL observations are consistent with previous deep level transient spectroscopy and doppler positron annihilation spectroscopy results. All of the experimental results are consistent with the ion migration model of degradation and can be explained using a grain boundary defect model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Eda, A. Ega and M. Matsuoka,J. Appl. Phys. 51, 2678 (1980).

    Article  CAS  Google Scholar 

  2. K. Sato, Y. Takada, H. Makewa, M. Ototake and S. Tominga,Jpn. J. Appl. Phys. 19, 909 (1980).

    Article  CAS  Google Scholar 

  3. T.K. Gupta, W.G. Carlson and P.L. Hower,J. Appl. Phys. 52, 4104 (1981).

    Article  CAS  Google Scholar 

  4. K. Takahashi, T. Miyoshi, K. Meada, T. Yamazaki and S. Ohwada,Grain Boundaries in Semiconductors, ed. J.H. Leamy, G.E. Pike and C.H. Seager (New York: Elsevier, New York, 1982), p. 399.

    Google Scholar 

  5. T.K. Gupta and W.G. Carlson,J. Mater. Sci. 20,3487 (1987).

    Article  Google Scholar 

  6. A. Rohatgl, S.K. Pang, T.K. Gupta and W.D. Sträub,J. Appl. Phys. 63, 5375 (1988).

    Article  Google Scholar 

  7. T.K. Gupta, W.D. Straub, M.S. Ramanachalam, J.P. Schaffer and A. Rohatgi,J. Appl. Phys. 66, 6132 (1989).

    Article  CAS  Google Scholar 

  8. W. Hirshwald, P. Bonasewicz, L. Ernst, M. Grade, D. Hoffman, S. Krebs, R. Littbarski, G. Neumann, M. Grunze, D. Kolb and H.J. Schulz,Current Topics in Materials Science, Vol. 7, ed. E. Kaldis (North Holland, 1981), p. 241.

  9. N. Riehl,J. Lumin. 24-25, 335 (1981).

    Article  CAS  Google Scholar 

  10. M. Liu, A.H. Kitai and P. Masher,J. Lumin. 54, 35 (1992).

    Article  CAS  Google Scholar 

  11. N. Riehl and H. Ortman,Z. Elektrochem. 60, 149 (1956).

    CAS  Google Scholar 

  12. E.G. Bylander,J. Appl. Phys. 49, 1188 (1978).

    Article  CAS  Google Scholar 

  13. F.I. Vergunnas and G.A. Konivalow,J. Exp. & Theoret. Phys. 23, 712 (1952).

    Google Scholar 

  14. Y.M. Zelikin and A.P. Zhukovskii,Opt. Spectrocs. 11, 212 (1961).

    Google Scholar 

  15. J.A. Garcia, A. Remon and J. Piqueras,Appl. Phys. 42, 297 (1987).

    Article  Google Scholar 

  16. M.S. Ramanachalam, J.P. Schaffer, A. Rohatgi and T. K. Gupta,J. Appl. Phys. 69, 8380 (1991).

    Article  CAS  Google Scholar 

  17. T.K. Gupta and W.G. Carlson,J. Appl. Phys. 53,7401 (1982).

    Article  CAS  Google Scholar 

  18. M.H. Sukkar and H.L. Tuller,Advances in Ceramics, ed. M.F. Yan and A.H. Heuer (Columbus, OH: American Ceramic Society, 1983), Vol. 7, p. 71.

    Google Scholar 

  19. F.A.Kroger,The Chemistry of Imperfect Crystals, (Amsterdam: North-Holland, 1964), Chap. 20.

    Google Scholar 

  20. R. Einzinger,Grain Boundaries in Semiconductors, ed. H.J. Leamy, G.E. Pike and C.H. Seager (New York: Elsevier, 1982), p. 343.

    Google Scholar 

  21. T.K. Gupta and A.C. Miller,J. Mater. Res. 3, 4, 745 (1988).

    CAS  Google Scholar 

  22. T.K. Gupta,J. Mater.Res. 7, 12, 3280 (1992).

    CAS  Google Scholar 

  23. F. Greuter and G. Blatter,Semicon. Sci. Technol. 5, 111 (1990).

    Article  CAS  Google Scholar 

  24. K.I. Hagemark,J. Solid State Chemistryl6, 293 (1976).

    Article  Google Scholar 

  25. G.D. Mahan,J. Appl. Phys. 54, 3825 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanachalam, M.S., Rohatgi, A., Carter, W.B. et al. Photoluminescence study of ZnO varistor stability. J. Electron. Mater. 24, 413–419 (1995). https://doi.org/10.1007/BF02659707

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02659707

Key words

Navigation