Skip to main content
Log in

Microcharacterization of composition modulations in epitaxial ZnSe1-xTex

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Molecular beam epitaxial growth of the ZnSe1-xTex (x=0.44-0.47) alloy on vicinal (001) GaAs substrates tilted four, six, and nine degree-[111]A or B results in partial phase separation of the alloy with a vertical modulation between different compositions. Transmission electron microscopy images of samples grown on four degree-tilted substrates showed superlattice-like structures, with periods in the range 13.4-28.9Â. Lattice images reveal diffuse interfaces between light and dark bands. Period variations were detected in isolated regions of some samples. We present evidence that the modulation develops at the growth surface, and remains stable in the bulk at temperatures up to 450°C. Satellite spot pairs with approximate indices (h k 1 + δ) were present near the zinc-blende spots in electron diffraction patterns and x-ray diffraction data, as expected from material with a sinusoidal composition profile. The orientation of the spots reveals that the modulation vector is parallel to the growth direction, rather than to [001]. The [111]A- and B-tilted samples showed significant modulation, while the five degree-[110] and on-axis material showed no detectable modulation. The modulation wavelength did not strongly depend on growth temperature in the range examined (285–335°C). Samples showing composition modulation did not exhibit significantly altered low-temperature luminescence spectra from material with no modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Aven,Appl. Phys. Lett. 7, 146 (1965).

    Article  CAS  Google Scholar 

  2. M. Aven and W. Garwacki,J. Appl. Phys. 38, 2302 (1967).

    Article  CAS  Google Scholar 

  3. J.E. Bernard and A. Zunger,Phys. Rev. B 36, 3199 (1987).

    Google Scholar 

  4. S. Larach, R.E. Shrader and C.F. Stocker,Phys.Rev. 108,587 (1957).

    Article  CAS  Google Scholar 

  5. A. Ebina, M. Yamamoto and T. Takahashi,Phys. Rev. B 6, 3786 (1972).

    Google Scholar 

  6. M.J.S.P. Brasil, R.E. Nahory, F.S. Turco-Sandroff, H.L. Gilchrist and R.J. Martin,Appl. Phys. Lett. 58, 2509 (1991).

    Article  CAS  Google Scholar 

  7. J.J. Davies,Semicond. Sci. Technol. 3, 219 (1988).

    Article  CAS  Google Scholar 

  8. S. Permogorov, A. Reznitsky, A. Naumov, H. Stolz and W. Von der Osten,J. Luminescence 40, 41, 483 (1988).

    Google Scholar 

  9. A. Naumov, S. Permogorov, A. Reznitsky and S. Verbin,J. Cryst. Growth, 101, 713 (1990).

    Article  CAS  Google Scholar 

  10. R.E. Smallman, W. Hume-Rothery,and C. W. Haworth,The Structure of Metals and Alloys, (London: Institute of Metals, 1988), p. 118.

    Google Scholar 

  11. J.B. Boyce and J.C. Mikkelsen, Jr.,J. Cryst. Growth 98, 37 (1989).

    Article  CAS  Google Scholar 

  12. D.B. Zax, S. Vega, N. Yellin and D. Zamir,Chem. Phys. Lett. 138, 105 (1987).

    Article  CAS  Google Scholar 

  13. R.D. Feldman, R.F. Austin, P.H. Fuoss, A.H. Dayem, E.H. Westerwick, S. Nakahara, T. Boone, J. Menendez, A. Pinczuk, J.P. Valladares and S. Brennan,J. Vac. Sci. Technol. B 5,690 (1987).

    Google Scholar 

  14. D.M. Wood and A. Zunger,Phys. Rev. B, 40, 4062 (1989).

    Article  CAS  Google Scholar 

  15. R.M. Biefeld., K.C. Baucom, S.R. Kurtz and D.M. Follstaedt,J. Cryst. Growth 133, 38 (1993).

    Article  CAS  Google Scholar 

  16. T.L. McDevitt, S. Mahajan, D.E. Laughlin, W.A. Bonner and V.G. Keramidas,Phys. Rev. B 45, 6614 (1992).

    Article  CAS  Google Scholar 

  17. P. Bellon, J.P. Chevalier, G.P. Martin, E. Dupont-Nivet, C. Thiebaut and J.P. André,Appl. Phys. Lett. 53, 567 (1988).

    Article  Google Scholar 

  18. LT. Feruguson, A.G. Norman, B.A. Joyce, T-Y. Seong, G.R. Booker, R.H. Thomas, C.C. Phillips and R.A. Stradling,Appl. Phys. Lett. 59, 3324 (1991).

    Article  Google Scholar 

  19. T. Yao, Y. Makita and S. Maekawa,J. Cryst. Growth 45, 309 (1978).

    Article  CAS  Google Scholar 

  20. F.S. Turco-Sandroff, R.E. Nahory, M.J.S.P. Brasil, R.J. Martin, R. Beserman, L.A. Farrow, J.M. Worlockand A.L. Weaver,J. Cryst. Growth 111, 762 (1991).

    Article  CAS  Google Scholar 

  21. E.M. Alekseeva, V.V. Ivanov and V.A. Sanitarov,Inorganic Materials, 26, 2659 (1990).

    CAS  Google Scholar 

  22. M. Konagai, M. Kobayashi, R. Kimura and K. Takahashi,J. Cryst. Growth 86, 290 (1988).

    Article  CAS  Google Scholar 

  23. M. Kobayashi, N. Mino, H. Katagiri, R. Kimura, M. Konagai and K. Takahashi,J. Appl. Phys. 60, 773 (1986).

    Article  CAS  Google Scholar 

  24. H. Kuwabara, H. Fujiyasu, M. Aoki and S. Yamada,Jpn. J. Appl. Phys. 25, L707 (1986).

    Article  CAS  Google Scholar 

  25. G.B. Stringfellow,J. Cryst. Growth 98, 108 (1989).

    Article  CAS  Google Scholar 

  26. S. Froyen and A. Zunger,Phys. Rev. Lett. 66, 2132 (1991).

    Article  CAS  Google Scholar 

  27. T. Suzuki and A. Gomyo,J. Cryst. Growth, 111, 353 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahrenkiel, S.P., Bode, M.H., Al-Jassim, M.M. et al. Microcharacterization of composition modulations in epitaxial ZnSe1-xTex . J. Electron. Mater. 24, 319–325 (1995). https://doi.org/10.1007/BF02659694

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02659694

Key words

Navigation