Skip to main content
Log in

The role of the constituent phases in determining the low temperature toughness of 5.5Ni cryogenic steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Ferritic Fe-Ni steels that are intended for service at low temperature are usually given an intercritical temper as the final step in their heat treatment. The temper dramatically decreases the ductile-brittle transition temperature, TB. Its metallurgical effect is to temper the lath martensite matrix and precipitate a distribution of fine austenite particles along the lath boundaries. Prior research suggests that the low value of TB is a consequence of the small effective grain size of the ferrite-austenite composite. The present research was done to test this suggestion against the counter-hypothesis that the low TB is due to the inherent toughness of the constituent phases. The approximate compositions of the tempered martensite and precipitated austenite phases in the composite microstructure of tempered 5.5Ni steel are known from STEM analysis. Bulk alloys were cast with these two compositions. Their mechanical properties were measured after heat treatment and compared to those of the parent alloy in the toughened ‘QLT’ condition. Both of the constituent phases are brittle at low temperature. It follows that the outstanding low-temperature toughness of the tempered alloy cannot be attributed to the inherent properties of the constituent phases, but must reflect their cooperative behavior in the composite microstructure. The austenitic bulk alloy was also used to investigate the stability of the precipitated austenite phase. The thermomechanical stability of the bulk alloy approximates that of the precipitated austenite within tempered 5.5Ni steel. This result is consistent with previous data, and supports the conclusion that the stability of the precipitated austenite is determined mainly by its chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W. Marshall, R.H. Heheman, and A. R. Troiano:Trans. ASM, 1962, vol. 55, p. 135.

    Google Scholar 

  2. T. Ooka, H. Mimura, S. Yano, K. Sugibo, and T. Toizumi:J. Japan Inst. Metals, 1966, vol. 30, p. 442.

    CAS  Google Scholar 

  3. H. Sakurai, S. Yano, T. Inoue, H. Mimura, and K. Aoki:J. Japan Inst. Metals, 1969, vol. 33, p. 856.

    CAS  Google Scholar 

  4. S. Nagashima, T. Ooka, S. Sekino, H. Mimura, T. Fujishima, S. Yano, and H. Sakurai:Trans. ISIJ, 1971, vol. 11, p. 402.

    CAS  Google Scholar 

  5. S. Nagashima, T. Ooka, S. Sekino, H. Mimura, T. Fujishima, S. Yano, and H. Sakurai:Tetsu-to-Hagané, 1972, vol. 58, p. 128.

    CAS  Google Scholar 

  6. S. Yano, H. Sakurai, H. Mimura, N. Wakita, T. Ozama, and K. Aori:Trans. ISIJ, 1973, vol. 13, p. 133.

    CAS  Google Scholar 

  7. G. L. Swales and A. G. Haynes: Metals Progress, June 1975, p. 43.

    Google Scholar 

  8. J. W. Morris, Jr., J.I. Kim, and C. K. Syn: inAdvances in Metal Processing, J. Burke, R. Mehrabian, and V. Weiss, eds., Plenum Press, 1981, p. 173.

  9. S.K. Hwang, S. Jin, and J. W. Morris, Jr:Metall. Trans. A, 1975, vol. 6A, p. 2015.

    CAS  Google Scholar 

  10. C.K. Syn, S. Jin, and J. W. Morris, Jr.:Metall. Trans. A, 1976, vol. 7A, p. 1827.

    CAS  Google Scholar 

  11. J. I. Kim, C. K. Syn, and J. W. Morris, Jr.:Metall. Trans. A, 1983, vol. 14A, p. 93.

    Google Scholar 

  12. T. Ooka and K. Sugino:J. Japan Inst. Metals, 1966, vol. 30, p. 435.

    CAS  Google Scholar 

  13. J.W. Morris, Jr., S. Jin, and C.K. Syn: inProc, 2nd Int. Conf. on Mechanical Behavior of Materials, Boston, 1976, AIME, Warrendale, PA, p. 1159.

    Google Scholar 

  14. K.J. Kim and L. H. Schwartz:Mat. Sci. Eng., 1978, vol. 33, p. 5.

    Article  CAS  Google Scholar 

  15. J.I. Kim and J.W. Morris, Jr.:Metall. Trans. A, 1980, vol. 11A, p. 1401.

    CAS  Google Scholar 

  16. S. Jin, S. K. Hwang, and J. W. Morris, Jr.:Metall. Trans. A, 1975, vol. 6A, p. 1659.

    Google Scholar 

  17. J.W. Morris, Jr., C.K. Syn, J.I. Kim, and B. Fultz: inProc. Int. Conf. on Martensitic Transformations (ICOMAT), W. Owen, ed., MIT Press, Cambridge, MA, 1979, p. 572.

    Google Scholar 

  18. G.O. Fior: M.S. Thesis, Univ. of California, Berkeley, CA, 1982 (Lawrence Berkeley Laboratory Rept. LBL-14751, June 1982).

    Google Scholar 

  19. O. Tamate:Int. J. Fracture Mech., 1968, vol. 4, p. 257.

    Google Scholar 

  20. S. D. Antolovich and B. Singh:Metall. Trans., 1971, vol. 2, p. 2135.

    CAS  Google Scholar 

  21. H. J. Rack and D. Kalish:Metall. Trans., 1971, vol. 2, p. 3011.

    CAS  Google Scholar 

  22. C. N. Alquist:Acta Metall., 1975, vol. 23, p. 239.

    Article  Google Scholar 

  23. J. I. Kim: Ph.D. Thesis, Univ. of California, Berkeley, CA, 1979 (Lawrence Berkeley Laboratory Rept. No. LBL-9956).

    Google Scholar 

  24. J.I. Kim and J.W. Morris, Jr.:Metall. Trans. A, 1981, vol. 12A, p. 1957.

    Google Scholar 

  25. W. Steven and A. G. Haynes:J. Iron and Steel Inst., 1956, vol. 183, p. 349.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.I., Kim, H.J. & Morris, J.W. The role of the constituent phases in determining the low temperature toughness of 5.5Ni cryogenic steel. Metall Trans A 15, 2213–2219 (1984). https://doi.org/10.1007/BF02647104

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647104

Keywords

Navigation