Skip to main content
Log in

Characterization of a stable, anchorage-dependent clone obtained from a spontaneously transformed mouse cell line

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

A variant nontransformed clone, I21, was selected from the spontaneously transformed mouse fibroblast line, IT22. Selection was done by plating IT22 in methylcellulose and picking single cells after 2 d. Cultures derived from these single cells were selected again and one clone, I21, derived from the second round of selection was characterized extensively. I21 and IT22 have the same plating efficiency (PE) on plastic, but in agarose they differ by 1000-fold. In comparison to IT22, I21 has a normal morphological appearance, a lower saturation density, a higher viability in stationary phase, an increased doubling time, an increased chromosome content, and is unable to form tumors in nude mice. I21 has remained remarkably stable in culture and has not reverted to the transformed phenotype for at least 300 generations in culture. Over 100 clones of I21, expanded to 106 cells, failed to show an increased PE in agarose. Even expansion of the rare colonies of I21 that grow in agarose failed to produce clones similar to IT22.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gey, G. O. Cytological and cultural observations on transplantable rat sarcomata produced by inoculation of altered normal cells maintained in continuous culture. Cancer Res. 1: 737; 1941.

    Google Scholar 

  2. Earle, W. R.; Nettleship, A. Production of malignancy in vitro. V. Results of injections of cultures into mice. J. Natl. Cancer Inst. 4: 213–227; 1943.

    CAS  Google Scholar 

  3. Sanford, K. Malignant transformation of cells in vitro. Int. Rev. Cytol. 18: 249–311; 1965.

    Article  PubMed  CAS  Google Scholar 

  4. Ponten, J. Spontaneous and virus-induced transformation in culture. In: Gard, S.; Hallauer, C.; Meyer, K. F. eds. Virology monographs. Wien, New York: Springer-Verlag; 1971: 1–45.

    Google Scholar 

  5. Pollack, R.; Wolman, S.; Vogel, A. Reversion of virus-transformed cell lines: hyperploidy accompanies retention of viral genes. Nature 228: 967–970; 1970.

    Article  Google Scholar 

  6. Marshall, C. J.; Dave, H. Suppression of the transformed phenotype in somatic cell hybrids. J. Cell Sci. 33: 171–190; 1978.

    PubMed  CAS  Google Scholar 

  7. MacPherson, I.; Montagnier, L. Agar suspension culture for the selective assay of cells transformed by polyoma virus. Virology 23: 291–294; 1964.

    Article  PubMed  CAS  Google Scholar 

  8. Shin, S.; Freedman, V. H.; Risser, R.; Pollack, R. Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc. Natl. Acad. Sci. USA 72: 4435–4439; 1975.

    Article  PubMed  CAS  Google Scholar 

  9. Vogel, A.; Pollack, R. Methods of obtaining revertants of transformed cells. In: Prescott, D. M., ed. Methods in cell biology. Vol. 8. New York, London: Academic Press; 1974: 75–92.

    Google Scholar 

  10. Todaro, G. J.; Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established cell lines. J. Cell Biol. 17: 299–313; 1963.

    Article  PubMed  CAS  Google Scholar 

  11. Croce, C. M.; Knowles, B. B.; Koprowski, H. Preferential retention of the human chromosome C-7 in human-(thymidine kinase deficient) mouse hybrid cells. Exp. Cell Res. 82: 457–461; 1973.

    Article  PubMed  CAS  Google Scholar 

  12. Stanners, C. P.; Elicieri, G. L.; Green, H. Two types of ribosome in mouse-hamster hybrids. Nature 230: 52–53; 1971.

    CAS  Google Scholar 

  13. Levine, E. M.; Becker, B. G. Biochemical methods for detectingMycoplasma contamination. In: McGarrity, G. J.; Murphy, D. G.; Nichols, W. W., eds.Mycoplasma infection of cell cultures, New York: Plenum Press; 1978: 87–104.

    Google Scholar 

  14. Vogel, A.; Pollack, R. Isolation and characterization of revertant cell lines. IV. Direct selection of serum-revertant sublines of SV40-transformed 3T3 mouse cells. J. Cell Physiol. 82: 189–198; 1973.

    Article  PubMed  CAS  Google Scholar 

  15. Hitosumachi, S.; Rabinowitz, Z.; Sachs, L. Chromosomal control of reversion in transformed cells. Nature 225: 511–514; 1971.

    Article  Google Scholar 

  16. Rabinowitz, Z.; Sachs, L. Control of reversion of properties in transformed cells. Nature 225: 136–139; 1970.

    Article  PubMed  CAS  Google Scholar 

  17. Pollard, J. W.; Stanners, C. P. Characterization of cell lines showing growth control isolated from both the wild-type and a leucyl-tRNA synthetase mutant of Chinese hamster ovary cells. J. Cell Physiol. 98: 571–586; 1979.

    Article  PubMed  CAS  Google Scholar 

  18. MacPherson, I. Reversion in hamster cells transformed by Rous sarcoma virus. Science 148: 1731–1733; 1965.

    Article  PubMed  Google Scholar 

  19. Stephenson, R. R.; Scolnik, E. M.; Aaronson, S. A. Genetic stability of the sarcoma viruses in murine and avian sarcoma virus-transformed non-producer cells. Int. J. Cancer 9: 577–583; 1972.

    Article  PubMed  CAS  Google Scholar 

  20. Ozanne, B.; Vogel, A. Selection of revertants of Kirsten sarcoma virus transformed nonproducer BALB/3T3 cells. J. Virol. 14: 239–248; 1974.

    PubMed  CAS  Google Scholar 

  21. Sager, R.; Kovac, P. E. Genetic analysis of tumorigenesis. I. Expression of tumor-forming ability in hamster hybrid cell lines. Somat. Cell Genet. 4: 375–392; 1978.

    Article  PubMed  CAS  Google Scholar 

  22. Graham, F. L.; Bacchetti, S.; McKinnon, R.; Stanners, C.; Cordell, B.; Goodman, H. Transformation of mammalian cells with DNA using the calcium technique. In: Baserga, R.; Croce, C.; Rovera, G. eds. Introduction of macromolecules into viable mammalian cells. The Wistar symposium series. Vol. 1. New York: Alan R. Liss, Inc.; 1980: 3–25.

    Google Scholar 

  23. Cooper, G. M. Cellular transforming genes. Science 218: 801–806; 1982.

    Article  Google Scholar 

  24. Murray, M. J.; Shilo, B.-Z.; Shih, C.; Cowing, D.; Hsu, H. W.; Weinberg, R. A. Three different human tumor cell lines contain different oncogenes. Cell 25: 355–361; 1981.

    Article  PubMed  CAS  Google Scholar 

  25. Shimizu, K.; Goldfarb, M.; Suard, Y.; Perucho, M.; Li, Y.; Kamata, T.; Feramisco, J.; Stavnezer, E.; Fogh, J.; Wigler, M. H. Three human transforming genes are related to the viral ras oncogenes. Proc. Natl. Acad. Sci. USA 80: 2112–2116; 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research was supported by the Medical Research Council and the National Cancer Institute of Canada. R. Godbout was supported by a 1967 Science Scholarship and by an MRC Studentship. B. L. Gallie is a Research Associate of the Ontario Cancer Treatment and Research Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godbout, R., Gallie, B.L. & Phillips, R.A. Characterization of a stable, anchorage-dependent clone obtained from a spontaneously transformed mouse cell line. In Vitro 20, 479–485 (1984). https://doi.org/10.1007/BF02619621

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02619621

Key words

Navigation