Skip to main content
Log in

Neutrophil activation by adhesion: mechanisms and pathophysiological implications

  • Review
  • Published:
International Journal of Clinical and Laboratory Research

Abstract

Neutrophil adhesion plays an essential role in the formation of an inflammatory exudate. Moreover, adhesion activates selective neutrophil functions and regulates the cell response to additional stimuli. In this review we summarize the information available on adhesion molecules involved in neutrophil adhesion to endothelial cells and extracellular matrix proteins and the experimental approaches which have been developed to block neutrophil adhesion and neutrophil mediated tissue damage. We also address the mechanisms of activation of selective neutrophil functions by adhesion molecules and, in particular, the mechanisms of signal transduction by neutrophil integrins. On the basis of recent results obtained in our and other laboratories we propose a model hypothesizing mechanisms of signaling by neutrophil integrins involved in regulation of selective functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cassatella MA. The production of cytokines by polymorphonuclear neutrophils. Immunol Today 1995: 16:21.

    PubMed  CAS  Google Scholar 

  2. Butcher EC. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 1991; 67:1033.

    PubMed  CAS  Google Scholar 

  3. McEver RP. Leukocyte-endothelial cell interactions. Curr Opin Cell Biol 1992; 4:840.

    PubMed  CAS  Google Scholar 

  4. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76:301.

    PubMed  CAS  Google Scholar 

  5. Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 1994; 84:2068.

    PubMed  CAS  Google Scholar 

  6. Varki A. Selectin ligands. Proc Natl Acad Sci USA 1994; 91:7390.

    PubMed  CAS  Google Scholar 

  7. McEver RP, Moore KL, Cummings RD. Leukocyte trafficking mediated by selectin-carbohydrate interactions. J Biol Chem 1995; 270:11025.

    PubMed  CAS  Google Scholar 

  8. Asa D, Raycroft L, Ma L, Aeed PA, Kaytes PS, Elhammer AP, Geng JG. The P-selectin glycoprotein ligand functions as a common human leukocyte ligand for P- and E-selectins. J Biol Chem 1995; 270:11662.

    PubMed  CAS  Google Scholar 

  9. Garnotel R, Monboisse JC, Randoux A, Haye B, Borel JP. The binding of type I collagen to lymphocyte function-associated antigen (LFA) I integrin triggers respiratory burst of human polymorphonuclear neutrophils. Role of calcium and tyrosine phosphorylation of LFA-1. J Biol Chem 1995; 270:27495.

    PubMed  CAS  Google Scholar 

  10. Languino LR, Plescia J, Duperray A, Brian AA, Plow EF, Geltosky JE, Altieri DC. Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1 dependent pathway. Cell 1993; 73:1423.

    PubMed  CAS  Google Scholar 

  11. Xie J, Li R, Kotovuori P, Vermot-Desroches C, Wijdenes J, Arnaout MA, Nortamo P, Gahmberg CG. Intracellular adhesion molecule-2 (CD102) binds to the leukocyte integrin CD 11b/CD18 through the A domain. J Immunol 1995; 155:3619.

    PubMed  CAS  Google Scholar 

  12. Wright SD, Weitz JI, Huang AJ, Levin SM, Silverstein SC, Loike JD. Complement receptor type three (CD11b/CD18) of human polymorphonuclear leukocytes recognizes fibrinogen. Proc Natl Acad Sci USA 1988; 85:7734.

    PubMed  CAS  Google Scholar 

  13. Altieri DC, Bader R, Mannucci PM, Edgington TS. Oligospecificity of the cellular adhesion receptor MAC-1 encompasses an inducible recognition specificity for fibrinogen. J Cell Biol 1988; 107:1893.

    PubMed  CAS  Google Scholar 

  14. Altieri DC, Morrissey JH, Edgington TS. Adhesive receptor Mac-1 coordinates the activation of factor X on stimulated cells of monocytic and myeloid differentiation: an alternative initiation of the coagulation protease cascade. Proc Natl Acad Sci USA 1988; 85:7462.

    PubMed  CAS  Google Scholar 

  15. Wright SD, Rao PE, Van Voorhis WC, Craigmyle LS, Iida K, Talle MA, Westberg EF, Goldstein G, Silverstein SC. Identification of C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc Natl Acad Sci, USA 1983; 80:5699.

    PubMed  CAS  Google Scholar 

  16. Wachtfogel YT, De La Cadena RA, Kunapuli SP, Rick L, Miller M, Schultze RL, Altieri DC, Edgington TS, Colman RW. High molecular weight kininogen binds to Mac-1 on neutrophils by its heavy chain (domain 3) and its light chain (domain 5). J Biol Chem 1994; 269:19307.

    PubMed  CAS  Google Scholar 

  17. Relman D, Tuomanen E, Falkow S, Golenbock DT, Saukkonen K, Wright SD. Recognition of bacterial adhesion by an integrin: macrophage CR3 (α M β 2, CD11b/CD18) binds filamentous hemagglutinin ofBordetella pertussis. Cell 1990; 61:1375.

    PubMed  CAS  Google Scholar 

  18. Russel DG, Wright SD. Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein, gp63, ofLeishmania promastigotes. J Exp Med 1988; 168:279.

    Google Scholar 

  19. Talamas-Rohana P, Wright SD, Lennartz MR, Russell DG. Lipophosphoglycan fromLeishmania mexicana promastigotes binds to members of the CR3, p150,95 and LFA-1 family of leukocyte integrins. J Immunol 1990; 144:4817.

    PubMed  CAS  Google Scholar 

  20. Bullock WE, Wright SD. Role of the adherence-promoting receptors, CR3, LFA-1, and p150,95 in binding ofHistoplasma capsulatum by human macrophages. J Exp Med 1987; 165:195.

    PubMed  CAS  Google Scholar 

  21. Wright SD, Levin SM, Jong MTC, Chad Z, Kabbash LG. CR3 (CD11b/CD18) expresses one binding site for Arg-Gly-Asp-containing peptides and a second site for bacterial lipopolysacharde. J Exp Med 1989; 169:175.

    PubMed  CAS  Google Scholar 

  22. Diamond MS, Alon R, Parkos CA, Quinn MT, Springer TA. Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/CD18). J Cell Biol 1995; 130:1473.

    PubMed  CAS  Google Scholar 

  23. Mosser DM, Springer TA, Diamond MS.Leshmania promastigotes require opsonic complement to bind to the human leukocyte integrin Mac-1 (CD11b/CD18). J Cell Biol 1992; 116:511.

    PubMed  CAS  Google Scholar 

  24. Loike JD, Sodeik B, Cao L, Leucona S, Weitz JL, Detmers PA, Wright SD, Silverstein SC. CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the Aα chain of fibrinogen. Proc Natl Acad Sci USA 1991; 88:1044.

    PubMed  CAS  Google Scholar 

  25. Ingalls RR, Golenbock DT. CD11c/CD18 a transmembrane signalling receptor for lipopolysaccharide. J Exp Med 1995; 181:1473.

    PubMed  CAS  Google Scholar 

  26. Bilsland CAG, Diamond MS, Springer TA. The leukocyte integrin p150,95 (CD11c/CD18) as a receptor for iC3b. J Immunol 1994; 152:4582.

    PubMed  CAS  Google Scholar 

  27. Danilenko DM, Rossitto PV, Van der Vioren M, Le Trong H, McDonough SP, Affolter VK, Moore PF. A novel canine leukointegrin,α d β 2, is expressed by specific macrophage subpopulations in tissue and a minor CD8+ lymphocyte subpopulation in peripheral blood. J Immunol 1995; 155:35.

    PubMed  CAS  Google Scholar 

  28. Van der Vieren M, Le Trong H, Wood CL, Moore PF, John TS, Staunton DE, Gallatin WM. A novel leukointegrin,α d β 2, binds preferentially to ICAM-3. Immunity 1995; 3:683.

    PubMed  Google Scholar 

  29. Kubes P, Niu XF, Smith CW, Kehrli ME Jr, Reinhardt PH, Woodman RC. A novelβ 1-dependent adhesion pathway on neutrophils: a mechanism invoked by dihydrocytochalasin B or endothelial transmigration. FASEB J 1995; 9:1103.

    PubMed  CAS  Google Scholar 

  30. Bohnsack JF, Zhou XN. Divalent cation substitution reveals CD18- and very late antigen-dependent pathways that mediate human neutrophil adherence to fibronectin. J Immunol 1992; 149:1340.

    PubMed  CAS  Google Scholar 

  31. Bohnsack JF, Akiyama SK, Damsky CH, Knape WA, Zimmerman GA. Human neutrophil adherence to laminin in vitro. Evidence for a distinct neutrophil integrin receptor for laminin. J Exp Med 1990; 171:1221.

    PubMed  CAS  Google Scholar 

  32. Bohnsack JF. CD11/CD18-independent neutrophil adherence to laminin is mediated by the integrin VLA-6. Blood 1992; 79:1545.

    PubMed  CAS  Google Scholar 

  33. Rieu P, Lesavre P, Halbwachs-Mecarelli L. Evidence for integrins other thanβ 2 on polymorphonuclear neutro[hils: expression ofα 6 β 1 heterodimer. J Leukoc Biol 1993; 53:576.

    PubMed  CAS  Google Scholar 

  34. Brown EJ, Goodwin JL. Fibronectin receptors of phagocytes: characterization of the Arg-Gly-Asp binding proteins of human monocytes and polymorphonuclear leukocytes. J Exp Med 1988; 167:777.

    PubMed  CAS  Google Scholar 

  35. Gresham HD, Goodwin JL, Allen PM, Anderson DC, Brown EJ. A novel member of the integrin receptor family mediates Arg-Gly-Asp-stimulated neutrophil phagocytosis. J Cell Biol 1989; 108:1935.

    PubMed  CAS  Google Scholar 

  36. Brown EJ, Hooper L, Ho T, Gresham H. Integrin-associated protein: a 50 kD membrane antigen physically and functionally associated with integrins. J Cell Biol 1990; 111:2785.

    PubMed  CAS  Google Scholar 

  37. Gresham HD, Adams SP, Brown EJ. Ligand binding specificity of the leukocyte response integrin expressed by human neutrophils. J Biol Chem 1992; 267:13895.

    PubMed  CAS  Google Scholar 

  38. Humphries MJ. The molecular basis and specificity of integrin-ligand interactions. J Cell Science 1990; 97:585.

    PubMed  CAS  Google Scholar 

  39. Hynes RO. Integrins: versatility, modulation, and signalling in cell adhesion. Cell 1992; 69:11.

    PubMed  CAS  Google Scholar 

  40. Diamond MS, Springer TA, The dynamic regulation of integrin adhesiveness. Curr Biol 1994; 4:506.

    PubMed  CAS  Google Scholar 

  41. Stewart M, Thiel M, Hogg N. Leukocyte integrins. Curr Opin Cell Biol 1995; 7:690.

    PubMed  CAS  Google Scholar 

  42. Anderson DC, Springer TA. Leukocyte adhesion deficiency: an inherited defect in the Mac-1. LFA-1, and gp150,95 glycoproteins. Angu Rev Med 1987; 38:175.

    CAS  Google Scholar 

  43. Arnaout MA. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 1990; 75:1037.

    PubMed  CAS  Google Scholar 

  44. Shuster DE, Kehrli ME, Ackermann MR, Gilbert RO. Identification and prevalence of a genetic defect that causes leukocyte adhesion deficiency in Holstein cattle. Proc Natl Acad Sci USA 1992; 89:9225.

    PubMed  CAS  Google Scholar 

  45. Olchowy TW, Bochsler PN, Neilsen NR, Welborn MG, Slauson DO. Bovine leukocyte adhesion deficiency: in vitro assessment of neutrophil function and leukocyte integrin expression. Can J Vet Res 1994; 58:127.

    PubMed  CAS  Google Scholar 

  46. Etzioni A, Frydman M, Pollack S, Avidor I, Phillips ML, Paulson JC, Gershoni-Baruch R. Brief report: recurrent severe infections caused by a novel leukocyte adhesion deficiency. N Engl J Med 1992; 327:1789.

    PubMed  CAS  Google Scholar 

  47. Andrian UH von, Berger EM, Ramezani L, Chambers JD, Ochs HD, Harlan JM, Paulson JC, Etzioni A, Arfos KE. In vivo behavior of neutrophils from two patients with distinct inherited leukocyte adhesion deficiency syndromes. J Clin Invest 1993; 91:2893.

    Google Scholar 

  48. Price TH, Ochs HD, Gershoni-Baruch R, Harlan JM, Etzioni A. In vivo neutrophil and lymphocyte function studies in a patient with leukocyte adhesion deficiency type II. Blood 1994; 84:1635.

    PubMed  CAS  Google Scholar 

  49. Phillips ML, Schwartz BR, Etzioni A, Bayer R, Ochs HD, Paulson JD. Neutrophil adhesion in leukocyte adhesion deficiency syndrome type 2. J Clin Invest 1995; 96:2898.

    PubMed  CAS  Google Scholar 

  50. Labow MA, Norton CR, Rumberger JM, Lombard Gillooly KM, Shuster DJ, Hubbard J, Bertko R, Knaack PA, Terry RW, Harbison ML, Kontgen F, Stewart CL, McIntyre KW, Will PC, Burns DK, Wollitzky BA. Characterization of E-selectin-deficient mice: demonstration of overlapping function of the endothelial selectins. Immunity 1994; 1:709.

    PubMed  CAS  Google Scholar 

  51. Arbones ML, Ord DC, Ley K, Ratech H, Maynard Curry C, Otten G, Capon DJ, Tedder TF. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1994; 1:247.

    PubMed  CAS  Google Scholar 

  52. Tedder TF, Steeber DE, Pizcueta P. L-selectin-deficient mice have impaired leukocyte recruitment into inflammatory sites. J Exp Med 1995; 181:2259.

    PubMed  CAS  Google Scholar 

  53. Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD. Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 1993; 74:541.

    PubMed  CAS  Google Scholar 

  54. Bullard DC, Qin L, Lorenzo I, Quinlin WM, Doyle NA, Bosse R, Vestweber D, Doerschuk CM, Beaudet AL. P-selectin/ICAM-1 double mutant mice: acute emigration of neutrophils into the peritoneum is completely absent but is normal into pulmonary alveol. J Clin Invest 1995; 95:1782.

    PubMed  CAS  Google Scholar 

  55. Johnson RC, Mayadas TN, Frenette PS, Mebius RE, Subramaniam M, Lacasce A, Hynes RO, Wagner DD. Blood cell dynamics in P-selectin-deficient mice. Blood 1995; 86:1106.

    PubMed  CAS  Google Scholar 

  56. Ward PA. Adhesion molecule knockouts: one step forward and one step backward. J Clin Invest 1995; 95:1425.

    PubMed  CAS  Google Scholar 

  57. Kunkel EJ, Jung U, Bullard DC, Norman KE, Wolitzky BA, Vestweber D, Beaudet AL, Ley K. Absence of trauma-induced leukocyte rolling in mice deficient in both P-selectin and intercellular adhesion molecule 1. J Exp Med 1996; 183:57.

    PubMed  CAS  Google Scholar 

  58. Frenette PS, Mayadas TN, Rayburn H, Hynes RO, Wagner DD. Susceptibility to infection and altered hematopoiesis in mice deficient in both P- and E-selectin. Cell 1996; 84:563.

    PubMed  CAS  Google Scholar 

  59. Sligh JE, Ballantyne CM, Rich SS, Hawkins HK, Smith CW, Bradley A, Beaudet AL. Inflammatory and immune responses are impaired in mice deficient in intercellular adhesion molecule 1. Proc Natl Acad Sci USA 1993; 90:8529.

    PubMed  CAS  Google Scholar 

  60. Xu H, Gonzalo JA, St Pierre Y, Williams IR, Kupper TS, Cotran RS, Springer TA, Gutierrez Ramos JC. Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice. J Exp Med 1994; 180:95–109.

    PubMed  CAS  Google Scholar 

  61. Wilson RW, Ballantyne CM, Smith CW, Montgomery C, Bradley A, O'Brien WE, Beaudet AL. Gene targeting yields a CD18-mutant mouse for study of inflammation. J Immunol 1993; 151:1571.

    PubMed  CAS  Google Scholar 

  62. Witke W, Sharpe AH, Hartwig JH, Azuma T, Stossel TP, Kwiatkowski DJ. Hemostatic inflammatory and fibroblast responses are blunted in mice lacking gelsolin. Cell 1995; 81:41.

    PubMed  CAS  Google Scholar 

  63. Kishimoto TK, Anderson DC. The role of integrins in inflammation. In: Gallin JI, Goldstein IM, Snyderman R, eds. Inflammation: Basic principles and clinical correlates, 2nd edn, New York: Raven, 1992:353–391.

    Google Scholar 

  64. Albelda SM, Smith CW, Ward PA. Adhesion molecules and inflammatory injury. FASEB J 1994; 8:504.

    PubMed  CAS  Google Scholar 

  65. Nishikawa K, Guo YJ, Miyasaka M, Tamatami T, Collins AB, Sy MS, McCluskey RT, Andres G. Antibodies to intercellular adhesion molecule 1/lymphocyte function-associated antigen 1 prevent crescent formation in rat autoimmune glomerulonephritis. J Exp Med 1993; 177:667.

    PubMed  CAS  Google Scholar 

  66. Seko Y, Matsuda H, Kato K, Hashimoto Y, Yagita H, Okumura K, Yazaki Y. Expression of intercellular adhesion molecule-1 in murine hearts with acute myocarditis caused by coxsackie virus B3. J Clin Invest 1993; 91:1327.

    PubMed  CAS  Google Scholar 

  67. Weyrich AS, Ma XL, Lefer DJ, Albertine KH, Lefer AM. In vivo neutralization of P-selectin protects feline heart and endothelium in myocardial ischemia and reperfusion injury. J Clin Invest 1993; 91:2620.

    PubMed  CAS  Google Scholar 

  68. Koo GC, Rosen H, Sirotina A, Ma XD, Schultz L. Anti-CD11b antibody prevents immunopathologic changes in viable motheaten bone marrow chimeric mice. J Immunol 1993; 151:6733.

    PubMed  CAS  Google Scholar 

  69. Coughlan AF, Hau H, Dunlop LC, Berndt MC, Hancock WW. P-selectin and platelet-activating factor mediate initial endotoxin-induced neutropenia. J Exp Med 1994; 179:329.

    PubMed  CAS  Google Scholar 

  70. Kelly KJ, Williams WW Jr, Colvin RB, Bonventre JV. Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury. Proc Natl Acad Sci USA 1994; 91:812.

    PubMed  CAS  Google Scholar 

  71. Sharar SR, Mihelcic DD, Han KT, Harlan JM, Winn RK. Ischemia reperfusion injury in the rabbit ear is reduced by both immediate and delayed CD18 leukocyte adherence blockade. J Immunol 1994; 153:2234.

    PubMed  CAS  Google Scholar 

  72. Chen LY, Nichols WW, Hendricks JB, Yang BC, Mehta JL. Monoclonal antibody to P-selectin (PB1.3) protects against myocardial reperfusion injury in the dog. Cardiovasc Res 1994; 28:1414.

    PubMed  CAS  Google Scholar 

  73. Lo SK, Bevilacqua B, Malik AB. E-selectin ligands mediate tumor necrosis factor-induced neutrophil sequestration and pulmonary edema in guinea pig lungs. Circ Res 1994; 75:955.

    PubMed  CAS  Google Scholar 

  74. Bosse R, Vestweber D. Only simultaneous blocking of the L-and P-selectin completely inhibits neutrophil migration into mouse peritoneum. Eur J Immunol 1994; 24:3019.

    PubMed  CAS  Google Scholar 

  75. Inoue S, Nakao A, Kishimoto W, Murakami H, Itoh K, Itoh T, Harada A, Nonami T, Takagi H. Anti-neutrophil antibody attenuates the severity of acute lung injury in rats with experimental acute pancreatitis. Arch Surg 1995; 130:93.

    PubMed  CAS  Google Scholar 

  76. Berg EL, Fromm C, Melrose J, Tsurshita N. Antibodies cross-reactive with E- and P-selectin block both E- and P-selectin functions. Blood 1995; 85:31.

    PubMed  CAS  Google Scholar 

  77. Mulligan MS, Vaporciyan AA, Warner RL, Jones ML, Foreman KE, Miyasaka M, Todd RF 3rd, Ward PA. Compartmentalized roles for leukocytic adhesion molecules in lung inflammatory injury. J Immunol 1995; 154:1350.

    PubMed  CAS  Google Scholar 

  78. Farhood A, McGuire GM, Manning AM, Miyasaka M, Smith CW, Jaeschke H. Intercellular adhesion molecule I (ICAM-1) expression and its role in neutrophil-induced ischemia-reperfusion injury in rat liver. J Leukoc Biol 1995; 57:368.

    PubMed  CAS  Google Scholar 

  79. Wakefield TW, Strieter RM, Wilke CA, Kadell AM, Wrobleski SK, Burdick MD, Schmidt R, Kunkel SL, Greenfield LJ. Venous thrombosis-associated inflammation and attenuation with neutralizing antibodies to cytokines and adhesion molecules. Arterioscler Thromb Vasc Biol 1995; 15:258.

    PubMed  CAS  Google Scholar 

  80. Ridings PC, Windsor AC, Jutila MA, Blocher CR, Fisher BJ, Sholley MM, Sugerman HJ, Fowler AA 3rd. A dual-binding antibody to E- and L-selectin attenuates sepsis-induced lung injury. Am J Respir Crit Care Med 1995; 152:247

    PubMed  CAS  Google Scholar 

  81. Koike K, Moore EE, Moore FA, Franciose RJ, Fontes B, Kim FJ. CD11b blockade prevents lung injury despite neutrophil priming after gut ischemia/reperfusion. J Trauma 1995; 39:23.

    PubMed  CAS  Google Scholar 

  82. Mulligan MS, Paulson JC, De Frees S, Zheng ZL, Lowe JB, Ward PA. Protective effects of oligosaccharides in P-selectin-dependent lung injury. Nature 1993; 364:149.

    PubMed  CAS  Google Scholar 

  83. Rao BNN, Anderson MB, Musser JH, Gilbert JH, Schaefer ME, Foxall C, Brandley BK. Sialyl Lewis X mimics derived from a pharmacofore search are selectin inhibitors with anti-inflammatory activity. J Biol Chem 1994; 269:19663.

    PubMed  CAS  Google Scholar 

  84. Buerke M, Weyrich AS, Zheng Z, Gaeta FC, Forrest MJ, Lefer AM. Sialyl Lewis x-containing oligosaccharide attenuates myocardial reperfusion injury in cats. J Clin Invest 1994; 93:1140.

    PubMed  CAS  Google Scholar 

  85. Skurk C, Buerke M, Guo JP, Paulson L, Lefer AM. Sialyl Lewis x-containing oligosaccharide exerts beneficial effects in murine traumatic shock. Am J Physiol 1994; 267:H2124.

    PubMed  CAS  Google Scholar 

  86. Welply JK, Abbas SZ, Scudder P, Keene JL, Broschat K, Casnocha S, Gorka C, Steininger C, Howard SC, Schmuke JJ, et al. Multivalent sialyl-LeX: potent inhibitors of E-selectin-mediated cell adhesion: reagent for staining activated endothelial cells. Glycobiology 1994; 4:259.

    PubMed  CAS  Google Scholar 

  87. Granert C, Raud J, Xie X, Lindquist L, Lindbon L. Inhibition of leukocyte rolling with polysaccharide fucoidin prevents pleocytosis in experimental meningitis in the rabbit. J Clin Invest 1994; 93:929.

    PubMed  CAS  Google Scholar 

  88. Tuomanen E. A spoonful of sugars to control inflammation? J Clin Invest 1994; 93:917.

    PubMed  CAS  Google Scholar 

  89. Colgan SP, Parkos CA, McGuirk D, Brady HR, Papayianni AA, Frendl G, Madara JL. Receptors involved in carbohydrate binding modulate intestinal epithelial-neutrophil interactions. J Biol Chem 1995; 270:1053.

    Google Scholar 

  90. Han KT, Sharar SR, Phillips ML, Harlan JM, Winn RK. Sialyl lewis oligosaccharide reduces ischemia-reperfusion injury in the rabbit ear. J Immunol 1995; 155:4011.

    PubMed  CAS  Google Scholar 

  91. Gamble JR, Skinner MP, Berndt MC, Vadas MA. Prevention of activated neutrophil adhesion to endothelium by soluble adhesion protein GMP140. Science 1990; 249:414.

    PubMed  CAS  Google Scholar 

  92. Mulligan MS, Watson SR, Fennie C, Ward PA. Protective effects of selectin chimeras in neutrophil-mediated lung injury. J Immunol 1993; 151:6410.

    PubMed  CAS  Google Scholar 

  93. Martens CL, Cwirla SE, Lee RYW, Whitehorn E, Chen EYF, Bakker A, Martin EL, Wagstrom C, Gopalan P, Smith CW, Tate E, Koller KJ, Schatz PJ, Dower WJ, Barret RW. Peptides which bind to E-selectin and block neutrophil adhesion. J Biol Chem 1995; 270:21129.

    PubMed  CAS  Google Scholar 

  94. Moyle M, Foster DL, McGrath DE, Brown SM, Laroche Y, De Meutter J, Stanssens P, Bogowitz CA, Fried VA, Ely JA, Soule HR, Vlasuk GP. A hookworm glycoprotein that inhibits neutrophil function is a ligand of the integrin CD11b/CD18. J Biol Chem 1994; 269:10008.

    PubMed  CAS  Google Scholar 

  95. Rieu P, Ueda T, Haruta I, Sharma CP, Arnaout MA. The A-domain ofβ 2 integrin CR3 (CD11b/CD18) is a receptor for the hookworm-derived neutrophil adhesion inhibitor NIF. J Cell Biol 1994; 127:2081.

    PubMed  CAS  Google Scholar 

  96. Hogg N, Landis RC, Bates PA, Stanley P, Randi AM. The sticking point. How integrins bind to their ligands. Trends Cell Biol 1994; 4:379.

    PubMed  CAS  Google Scholar 

  97. Diamond MS, Garcia-Aguilar J, Bickford JK, Corbi AL, Springer TA. The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J Cell Biol 1993; 120:1031.

    PubMed  CAS  Google Scholar 

  98. Randi AM, Hogg N. I domain ofβ 2 integrin lymphocyte function-associated antigen-I contains a binding site for ligand intercellular molecule-I. J Biol Chem 1994; 269:1.

    Google Scholar 

  99. Ueda T, Rieu P, Brayer J, Arnaout MA. Identification of the complement iC3b binding site in theβ 2 integrin CR3 (CD11b/CD18). Proc Natl Acad Sci USA 1994; 91:10680.

    PubMed  CAS  Google Scholar 

  100. Zhou L, Lee DHS, Plescia J, Lau CY, Altieri DC. Differential ligand binding specificities of recombinant CD11b/CD18 integrin I-domain. J Biol Chem 1994; 269:17075.

    PubMed  CAS  Google Scholar 

  101. Bajt ML, Goodman T, McGuire SL.β 2 (CD18) mutations abolish ligand recognition by I domain integrins LFA-1(α L β 2,CD11a/CD18) and MAC-1 (α M β 2, CD11b/CD18). J Biol Chem 1995; 270:94.

    PubMed  CAS  Google Scholar 

  102. Kamata T, Wright R, Takada Y. Critical threonine and aspartic acid residues within the I domains ofβ 2 integrins for interactions with intercellular adhesion molecule 1 (ICAM-1) and C3bi. J Biol Chem 1995; 270:12531.

    PubMed  CAS  Google Scholar 

  103. Edwards CP, Champe M, Gonzalez T, Wessinger ME, Spencer SA, Presta LG, Berman PW, Bodary SC. Identification of amino acids in the CD11a I-domain important for binding of the leukocyte function-associated antigen-1 (LFA-1) to intercellular adhesion molecule-1 (ICAM-1), J Biol Chem 1995; 270:12635.

    PubMed  CAS  Google Scholar 

  104. Bergelson JM, Helmer ME. Do integrins use a “MIDAS touch” to grasp an asp? Curr Biol 1995; 5:615.

    PubMed  CAS  Google Scholar 

  105. D'Souza SE, Haas TA, Piotrowicz RS, Byers-Ward V, McGrath DE, Soule HR, Cierniewski C, Plow EF, Smith JW. Ligand and cation binding are dual functions of a discrete segment of the integrinβ 3 subunit: cation displacement is involved in ligand binding. Cell 1994; 79:659.

    PubMed  Google Scholar 

  106. Lee JO, Rieu P, Arnaout MA, Liddington R. Crystal structure of the A domain from the α subunit of integrin CR3 (CD11b/CD18). Cell 1995; 80:631.

    PubMed  CAS  Google Scholar 

  107. Felsh A, Stöcker K, Borchard U. Phorbol ester-stimulated adherence of neutrophils to endothelial cells is reduced by adenosine A2 receptor agonist. J Immunol 1995; 155:333.

    Google Scholar 

  108. Bullough DA, Magill MJ, Firestein GS, Mullane KM. Adenosine activates A2 receptors to inhibit neutrophil adhesion and injury to isolated cardiac myocytes. J Immunol 1995; 155:2579.

    PubMed  CAS  Google Scholar 

  109. Firestein GS, Bullough DA, Erion MD, Jimenez R, Ramirez Weinhouse M, Barankiewicz J, Smith CW, Gruber HE, Mullane KM. Inhibition of neutrophil adhesion by adenosine and an adenosine kinase inhibitor. The role of selectins. J Immunol 1995; 154:326.

    PubMed  CAS  Google Scholar 

  110. Mathew JP, Rinder CS, Tracey JB, Auszura LA, O'Connor T, Davis E, Smith BR. Acadesine inhibits neutrophil CD11b upregulation in vitro and during in vivo cardiopulmonary bypass. J Thorac Cardiovas Surg 1995; 109:448.

    CAS  Google Scholar 

  111. Zahler S, Becker BF, Raschke P, Gerlach E. Stimulation of endothelial adenosine A1 receptors enhances adhesion of neutrophils in the intact guinea pig coronary system. Cardiovasc Res 1994; 28:1366.

    PubMed  CAS  Google Scholar 

  112. De La Harpe J, Nathan CF. Adenosine regulates the respiratory burst of cytokine-triggered human neutrophils adherent to biologic surfaces. J Immunol 1989; 143:596.

    PubMed  Google Scholar 

  113. Cronstein BN. Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 1994; 76:5.

    PubMed  CAS  Google Scholar 

  114. Burch RM, Weitzberg M, Blok N, Muhlhauser R, Martin D, Farmer SJ, Bator JM, Connor JR, Green M, Ko C, Kuhn W, McMillan BA, Raynor M, Shearer BG, Tiffany C, Wilkins DE. N-(Fluorenyl-9-methoxycarbonyl) amino acids, a class of anti-inflammatory agents with a different mechanism of action. Proc Natl Acad Sci USA 1991; 88:355.

    PubMed  CAS  Google Scholar 

  115. Bator JM, Weitzberg M, Burch RM. N-[9H-2,7-Dimethylfluorenyl-9-methoxy)carbonyl]-l-leucine, NPC 15669, prevents neutrophil adherence to endothelium and inhibits CD11b/CD18 upregulation. Immunopharmacology 1992; 23:139.

    PubMed  CAS  Google Scholar 

  116. Burch RM, Noronha-Blob L, Bator JM, Lowe VC, Sullivan JP, Mice treated with a leumedin or antibody to Mac-1 to inhibit leukocyte sequestration survive endotoxin challenge. J Immunol 1993; 150:3397.

    PubMed  CAS  Google Scholar 

  117. Hamilton GS, Mewshaw RE, Bryant CM, Feng Y, Endemann G, Madden KS, Janczak JE, Perumattam J, Stanton LW, Yang X, et al. Fluorenylalkanoic and benzoic acids as novel inhibitors of cell adhesion processes in leukocytes. J Med Chem 1995; 38:1650.

    PubMed  CAS  Google Scholar 

  118. Smith RJ, Justen JM, Bleasdale JE, Sly LM. NPC 15669-modulated human polymorphonuclear neutrophil functional responsiveness: effects on receptor-coupled signal transduction. Br J Pharmacol 1995; 114:1694.

    PubMed  CAS  Google Scholar 

  119. Lehr HA, Frei B, Arfors KE. Vitamin C prevents cigarette smoke-induced leukocyte aggregation and adhesion to endothelium in vivo. Proc Natl Acad Sci USA 1994; 91:7688.

    PubMed  CAS  Google Scholar 

  120. Diaz-Gonzalez F, Gonzalez-Alvaro I, Campanero MR, Mollinedo F, del-Pozo MA, Munoz C, Pivel JP, Sanchez-Madrid F. Prevention of in vitro neutrophil-endothelial attachment through shedding of L-selection by nonsteroidal antiinflammatory drugs. J Clin Invest 1995; 95:1756.

    PubMed  CAS  Google Scholar 

  121. Hellewell PG, Young SK, Henson PM, Worthen GS. Paradoxic effect of ibuprofen on neutrophil accumulation in pulmonary and cutaneous inflammation. Am J Respir Crit Care Med 1995; 151:1218.

    PubMed  CAS  Google Scholar 

  122. Cronstein BN, Kimmel SC, Levin RI, Martiniuk F, Weissman G. A mechanism for the antiinflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule I and intercellular adhesion molecule I. Proc Natl Acad Sci USA 1992; 89:9991.

    PubMed  CAS  Google Scholar 

  123. Farsky SP, Sannomiya P, Garcia-Leme J. Secreted glucocorticoids regulate leukocyte-endothelial interactions in inflammation. A direct vital microscopic study. J Leukoc Biol 1995; 57:379.

    PubMed  CAS  Google Scholar 

  124. Burton JL, Kehrli ME Jr, Kapil S, Horst RL. Regulation of L-selectin and CD18 on bovine neutrophils by glucocorticoids: effects of cortisol and dexamethasone. J Leukoc Biol 1995; 57:317.

    PubMed  CAS  Google Scholar 

  125. Tessier P, Audette M, Cattaruzzi P, McColl SR. Up-regulation by tumor necrosis factor alpha of intercellular adhesion molecule 1 expression and function in synovial fibroblasts and its inhibition by glucocorticoids. Arthritis Rheum 1993; 36:1528.

    PubMed  CAS  Google Scholar 

  126. May GR, Crook P, Moore PK, Page CP. The role of nitric oxide as an endogenous regulator of platelet and neutrophil activation within the pulmonary circulation of the rabbit. Br J Pharmacol 1991; 102:759.

    PubMed  CAS  Google Scholar 

  127. Nakanishi K, Vinten-Johansen J, Lefer DJ, Zhao Z, Fowler WC 3rd, McGee DS, Johnston WE. Intracoronaryl-arginine during reperfusion improves endothelial function and reduces infarct size. Am J Physiol 1992; 263:H1650.

    PubMed  CAS  Google Scholar 

  128. Ma XL, Weyrich AS, Lefer DJ, Lefer AM. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res 1993; 72:403.

    PubMed  CAS  Google Scholar 

  129. Lefer AM, Siegfried MR, Ma XL. Protection of ischemia-reperfusion injury by sydnonimine NO donors via inhibition of neutrophil-endothelium interaction. J Cardiovasc Pharmacol 1993; 22:S27.

    Google Scholar 

  130. Provost P, Lam JY, Lacoste L, Merhi Y, Waters D. Endothelium derived nitric oxide attenuates neutrophil adhesion to endothelium under arterial flow conditions. Arterioscler Thromb 1994; 14:331.

    PubMed  CAS  Google Scholar 

  131. Abdih H, Kelly CJ, Bouchier Hayes D, Williams R, Watson G, Redmond HP, Burke P, Bouchier Hayes DJ. Nitric oxide (endothelium-derived relaxing factor) attenuates revascularization-induced lung injury. J Surg Res 1994; 57:39.

    PubMed  CAS  Google Scholar 

  132. Kubes P, Kurose I, Granger DN. NO donors prevent integrin-induced leukocyte adhesion but not P-selectin-dependent rolling in postischemic venules. Am J Physiol 1994; 267:H931.

    PubMed  CAS  Google Scholar 

  133. Sundqvist T, Forslund T, Bengtsson T, Axelsson KL. S-Nitroso-N-acetylpenicillamine reduces leukocyte adhesion to type I collagen. Inflammation 1994; 18:625.

    PubMed  CAS  Google Scholar 

  134. Egdell RM, Siminiak T, Sheridan DJ. Modulation of neutrophil activity by nitric oxide during acute myocardial ischaemia and reperfusion. Basic Res Cardiol 1994; 89:499.

    PubMed  CAS  Google Scholar 

  135. Christopher TA, Ma XL, Lefer AM. Beneficial actions of S-nitroso-N-acetylpenicillamine, a nitric oxide donor, in murine traumatic shock. Shock 1994; 1:19.

    PubMed  CAS  Google Scholar 

  136. Lopez Neblina F, Paez AJ, Toledo Percyra LH. Modulation of neutrophil infiltration through nitric oxide in the ischemic rat kidney. Transplant Proc 1995; 27:1883.

    PubMed  CAS  Google Scholar 

  137. Clancy RM, Leszczynska Piziak J, Abramson SB. Nitric oxide stimulates the ADP-ribosylation of actin in human neutrophils. Biochem Biophys Res Commun 1993; 191:847.

    PubMed  CAS  Google Scholar 

  138. Clancy R, Leszczynska Piziak J, Amin A, Levartovsky D, Abramson SB. Nitric oxide stimulates ADP ribosylation of actin in association with the inhibition of actin polymerization in human neutrophils. J Leukoc Biol 1995; 58:196.

    PubMed  CAS  Google Scholar 

  139. Claney RM, Leszczynska Piziak J, Abramson SB. Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J Clin Invest 1992; 90:1116.

    Google Scholar 

  140. Cronstein BN, Molad Y, Reibman J, Balakhane E, Levin RI, Weissmann G. Colchicine alters the quantitative and qualitative display of selectins on endothelial cells and neutrophils. J Clin Invest 1995; 96:994.

    PubMed  CAS  Google Scholar 

  141. Lo SK, Lee S, Ramos RA, Lobb R, Rosa M, Chi-Rosso G, Wright SD. Endothelial-leukocyte adhesion molecule 1 stimulates the adhesive activity of leukocyte integrin CR3 (CD11b/CD18, Mac-1,α m β 2) on human neutrophils. J Exp Med 1991; 173:1493.

    PubMed  CAS  Google Scholar 

  142. Laudanna C, Costantin G, Baron P, Scarpini E, Scarlato G, Cabrini G, Dechecchi C, Rossi F, Cassatella MA, Berton G. Sulfatides trigger increase of cytosolic free calcium and enhanced expression of tumor necrosis factor-α and interleukin-8 mRNA in human neutrophils. J Biol Chem 1994; 269:4021.

    PubMed  CAS  Google Scholar 

  143. Waddell TK, Fialkow L, Chan CK, Keishimoto TK, Downey GP. Potentiation of the oxidative burst of human neutrophils. A signaling role for L-selectin. J Biol Chem 1994; 269:18485.

    PubMed  CAS  Google Scholar 

  144. Crockett-Torabi E, Sulenbarger B, Smith CW, Fantone JC. Activation of human neutrophils through L-selectin and Mac-1 molecules. J Immunol 1995; 154:2291.

    PubMed  CAS  Google Scholar 

  145. Simon SI, Burns AR, Taylor AD, Gopalan PK, Lynam EB, Sklar LA, Smith CW, L-selectin (CD62L) cross-linking signals neutrophil adhesive functions via the Mac-1 (CD11b/CD18)β 2-integrin. J Immunol 1995; 155:1502.

    PubMed  CAS  Google Scholar 

  146. Waddell TK, Fialkow L, Chan CK, Kishimoto TK, Downey GP. Signaling function of L-selecti.. Enhancement of tyrosine phosphorylation and activation of MAP kinase. J Biol Chem 1995; 270:15403.

    PubMed  CAS  Google Scholar 

  147. Lorant DE, Patel KD, McIntyre TM, McEver RP, Prescott SM, Zimmerman GA. Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: a juxtacrine system for adhesion and activation of neutrophils. J Cell Biol 1991; 115:223.

    PubMed  CAS  Google Scholar 

  148. Lorant DE, Tophan MK, Whatley RE, McEver RP, McIntyre TM, Prescott SM, Zimmerman GA. Inflammatory roles of P-selectin. J Clin Invest 1993; 92:559.

    PubMed  CAS  Google Scholar 

  149. Wong CS, Gamble JR, Skinner MP, Lucas CM, Berndt MC, Vadas MA. Adhesion protein GMP-140 inhibits superoxide anion release by human neutrophils. Proc Natl Acad Sci USA 1991; 88:2397.

    PubMed  CAS  Google Scholar 

  150. Nagata K, Tsuji T, Todoroki N, Katagiri Y, Tanoue K, Yamazaki H, Hanai N, Irimura T. Activated platelets induce superoxide anion release by monocytes and neutrophils through P-selectin (CD62). J Immunol 1993; 151:3267.

    PubMed  CAS  Google Scholar 

  151. Cooper D, Butcher CM, Berndt MC, Vadas MA. P-selectin interacts with aβ 2-integrin to enhance phagocytosis. J Immunol 1994; 153:3199.

    PubMed  CAS  Google Scholar 

  152. Constantin G, Laudanna C, Baron P, Berton G. Sulfatides trigger cytokine gene expression and secretion in human monocytes. FEBS Lett 1994; 350:66.

    PubMed  CAS  Google Scholar 

  153. Celi A, Pellegrini G, Lorenzet R, De Blasi A, Ready N, Furie BC, Furie B. P-selectin induces the expression of tissue factor in monocytes. Proc Natl Acad Sci USA 1994; 91:8767.

    PubMed  CAS  Google Scholar 

  154. Lo SK, Cheung A, Zheng Q, Silverstein RL. Induction of tissue factor on monocytes by adhesion to endothelial cells. J Immunol 1995: 154:4768.

    PubMed  CAS  Google Scholar 

  155. Nathan CF. PMN activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J Clin Invest 1987: 80:1550.

    PubMed  CAS  Google Scholar 

  156. Nathan C, Srimal S, Farber C, Sanchez E, Kabbash L, Asch A, Gailit J, Wright SD. Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol 1989: 109:1341.

    PubMed  CAS  Google Scholar 

  157. Nathan CF, Sanchez E. Tumor necrosis factor and CD11/CD18(β 2) integrins act synergistically to lower cAMP in human PMNs. J Cell Biol 1990: 111:2171.

    PubMed  CAS  Google Scholar 

  158. Fuortes M, Jin WW, Nathan C. Adhesion-dependent protein tyrosine phosphorylation in neutrophils treated with tumor necrosis factor. J Cell Biol 1993: 120:777.

    PubMed  CAS  Google Scholar 

  159. Laudanna C, Rossi F, Berton G. Effect of inhibitors of distinct signalling pathways on PMN O2-generation in response to tumor necrosis factor-a, and antibodies against CD18 and CD11a: evidence for a common and unique pattern of sensitivity to wortamnin and protein tyrosine kinase inhibitors. Biochem Biophys Res Commun 1993: 190:935.

    PubMed  CAS  Google Scholar 

  160. Suchard J, Boxer LA. Exocytosis of a subpopulation of specific granules coincides with H2O2 production in adherent human neutrophils. J Immunol 1994: 152:290.

    PubMed  CAS  Google Scholar 

  161. Kownatzki E, Kapp A, Ulrich S. Modulation of human neutrophilic granulocyte functions by recombinant human tumor necrosis factor and recombinant human lymphotoxin. Promotion of adherence, inhibition of chemotactic migration and superoxide anion release from adherent cells. Clin Exp Immunol 1988: 74:143.

    PubMed  CAS  Google Scholar 

  162. Meurer R, MacIntyre DE. Lack of effect of pertussis toxin on TNF-α-induced formation of reactive oxygen intermediates by human neutrophils. Biochem Biophys Res Commun 1989: 159:763.

    PubMed  CAS  Google Scholar 

  163. Laudanna C, Miron S, Berton G, Rossi F. Tumor necrosis factor-alpha/cachectin activates the O 2 -generating system of human neutrophils independently of the hydrolysis of phosphoinositides and the release of arachidonic acid. Biochem Biophys Res Commun 1990: 166:308.

    PubMed  CAS  Google Scholar 

  164. Shappel SB, Toman C, Anderson DC, Taylor AA, Entman ML, Smith CW. Mac-1 (CD11b/CD18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils. J Immunol 1990: 144:2702.

    Google Scholar 

  165. Dri P, Cramer R, Romano M, Spessotto P, Patriarca P. Effect of biological surfaces on neutrophil O2-production and its relationship to the CD11b/CD18 integrin-dependent adherence. Int J Tissue React 1991: 13:193.

    PubMed  CAS  Google Scholar 

  166. Menegazzi R, Cramer R, Patriarca P, Scheurich P, Dri P. Evidence that tumor necrosis factor a (TNF)-induced activation of neutrophil respiratory burst on biological surfaces is mediated by the p55 receptor. Blood 1994: 84:287.

    PubMed  CAS  Google Scholar 

  167. Asmuth EJU von, Buurman WA. Endothelial cell associated platelet-activating factor (PAF), a costimulatory intermediate in TNF-a induced H2O2 release by adherent neutrophil leukocytes. J Immunol 1995: 154:1383.

    Google Scholar 

  168. Richter J, Andersson T, Olsson I. Effect of tumor necrosis factor and granulocyte/macrophage colony-stimulating factor on neutrophil degranulation. J Immunol 1989: 142:3199.

    PubMed  CAS  Google Scholar 

  169. Richter J, Olsson I, Andersson T. Correlation between spontaneous oscillations of cytosolic free Ca2+ and tumor necrosis factor-induced degranulation in adherent human neutrophils. J Biol Chem 1990: 265:14358.

    PubMed  CAS  Google Scholar 

  170. Richter J, Ng-Sikorski J, Olsson I, Andersson T. Tumor necrosis factor-induced degranulation in adherent human PMNs is dependent on CD11b/CD18-integrin-triggered oscillations of cytosolic free Ca2+. Proc Natl Acad Sci USA 1990: 87:9472.

    PubMed  CAS  Google Scholar 

  171. Suchard SJ, Nakamura T, Abe A, Shayman JA, Boxer LA, Phospholipase D-mediated diacylglycerol formation coincides with H2O2 and lactoferrin release in adherent human neutrophils. J Biol Chem 1994: 269:8063.

    PubMed  CAS  Google Scholar 

  172. Nathan CF. Respiratory burst in adherent human PMNs: triggering by colony-stimulating factors CSF-GM and CSF-G. Blood 1989: 73:301.

    PubMed  CAS  Google Scholar 

  173. Bazzoni F, Beutler B. How do tumor necrosis factor receptors work. J Inflammation 1995: 45:221.

    CAS  Google Scholar 

  174. Richter J, Gullberg U, Lantz M. TNF-induced superoxide anion production in adherent human neutrophils involves both the p55 and p75 TNF receptor. J Immunol 1995: 154:4142.

    PubMed  CAS  Google Scholar 

  175. Della Bianca V, Dusi S, Nadalini KA, Donini M, Rossi F. Role of 55- and 75-kDa TNF receptors in the potentiation of Fe-mediated phagocytosis in human neutrophils. Biochem Biophys Res Commun 1995: 214:44.

    PubMed  Google Scholar 

  176. Shalaby MR, Aggarwal BB, Rinderknecht E, Svedersky LP, Finkle BS, Palladino MA. Activation of human polymorphonuclear neutrophil functions by interferon-γ and tumor necrosis factors. J Immunol 1985: 135:2069.

    PubMed  CAS  Google Scholar 

  177. Klebanoff SJ, Vadas MA, Harlan JM, Sparks LH, Gamble JR, Agosti JM, Waltersdorph AM. Stimulation of neutrophils by tumor necrosis factor. J Immunol 1986: 136:4220.

    PubMed  CAS  Google Scholar 

  178. Perussia B, Kobayashi M, Rossi ME, Anegon I, Trinchieri G. Immune interferon enhances functional properties of human granulocytes: role of Fc receptors and effect of lymphotoxin, tumor necrosis factor, and granulocyte-macrophage colonystimulating factor. J Immunol 1987: 138:765.

    PubMed  CAS  Google Scholar 

  179. Berkow RL, Wang DW, Larrick JW, Dodson RW, Howard TH. Enhancement of neutrophil superoxide production by preincubation with recombinant human tumor necrosis factor. J Immunol 1987: 139:3783.

    PubMed  CAS  Google Scholar 

  180. Ferrante A, Nandoskar M, Walz A, Goh DHB, Kowanko IC. Effects of tumor necrosis factor alpha and interleukin-1 alpha and beta on human neutrophil migration, respiratory burst and degranulation. Int Arch Allergy Appl Immunol 1988: 86:82.

    PubMed  CAS  Google Scholar 

  181. Tsujimoto M, Yokota S, Vilcek J, Weissmann G. Tumor necrosis factor provokes superoxide anion generation from neutrophils. Biochem Biophys Res Commun 1986: 137:1094.

    PubMed  CAS  Google Scholar 

  182. Figari IS, Mori NA, Palladino MA. Regulation of neutrophil migration and superoxide production by recombinant tumor necrosis factors-α and-β; comparison to recombinant interferon-γ and interleukin-1α. Blood 1987: 70:979.

    PubMed  CAS  Google Scholar 

  183. Shalaby MR, Palladino MA Jr, Hirabayashi SE, Eessalu TE, Lewis GD, Shepard HM, Aggarwal BB. Receptor binding and activation of polymorphonuclear neutrophils by tumor necrosis factor-alpha. J Leukoc Biol 1987: 41:196.

    PubMed  CAS  Google Scholar 

  184. Liles WC, Ledbetter JA, Waltersdorph AW, Klebanoff SJ. Cross-linking of CD18 primes human neutrophils for activation of the respiratory burst in response to specific stimuli: implications for adhesion-dependent physiological responses in neutrophils. J Leukoc Biol 1995: 58:690.

    PubMed  CAS  Google Scholar 

  185. Bokoch GM. Regulation of the phagocyte respiratory burst by small GTP-binding proteins. Trends Cell Biol 1995: 5:109.

    PubMed  CAS  Google Scholar 

  186. Borregaard N. Current concepts about neutrophil granule physiology. Curr Opin Hematol 1996: 3:11.

    PubMed  CAS  Google Scholar 

  187. Yan SR, Fumagalli L, Berton G. Tumor necrosis factor triggers redistribution to a Triton X-100-insoluble, cytoskeletal fraction ofβ 2 integrins. NADPH oxidase components, tyrosine phosphorylated proteins, and the protein tyrosine kinase p58fgr in human neutrophils adherent to fibrinogen. J Leukoc Biol 1995: 58:595.

    PubMed  CAS  Google Scholar 

  188. Berton G, Laudanna C, Sorio C, Rossi F. Generation of signals activating PMN functions by leukocyte integrins: LFA-1 and gp150/95, but not CR3, are able to stimulate the respiratory burst of human PMNs. J Cell Biol 1992: 116:1007.

    PubMed  CAS  Google Scholar 

  189. Laudanna C, Melotti P, Bonizzato C, Piacentini G, Boner A, Serra MC, Berton G. Ligation of members of theβ 1 andβ 2 subfamilies of integrins by antibodies triggers eosinophil respiratory burst and spreading. Immunology 1993: 80:273.

    PubMed  CAS  Google Scholar 

  190. Zhou M, Brown EJ. Leukocyte response integrin and integrinassociated protein act as a signal transduction unit in generation of a phagocyte respiratory burst. J Exp Med 1993: 178:1165.

    PubMed  CAS  Google Scholar 

  191. Zhou MJ, Brown EJ. CR3 (Mac-1,α m β 2, CD11b/CD18) and FcγRIII cooperate in generation of a neutrophil respiratory burst: requirement for FcγRII and tyrosine phosphorylation. J Cell Biol 1994: 125:1407.

    PubMed  CAS  Google Scholar 

  192. Wright SD, Silverstein C. Receptors for C3b and C3bi promote phagocytosis but not release of toxic oxygen from human phagocytes. J Exp Med 1983: 158:2016.

    PubMed  CAS  Google Scholar 

  193. Yamamoto K, Johnson RB. Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages. J Exp Med 1984: 159:405.

    PubMed  CAS  Google Scholar 

  194. Monboisse JC, Garnotel R, Randoux A, Dufer J, Borel JP. Adhesion of human neutrophils to and activation by type-I collagen involvingβ 2 integrin. J Leukoc Biol 1991: 50:373.

    PubMed  CAS  Google Scholar 

  195. Davis GE. The Mac-1 and p159,95β 2 integrins bind denaturated proteins to mediate leukocyte cell-substrate adhesion. Exp Cell Res 1992: 200:242.

    PubMed  CAS  Google Scholar 

  196. Van Srijp JAG, Russell DG, Tuomanen E, Brown EJ, Wright SD. Ligand specificity of purified complement receptor type three (CD11b/CD18,α m β 2, Mac-1). Indirect effects of an ARG-GLY-ASP (RGD) sequence. J Immunol 1993: 151:3324.

    Google Scholar 

  197. Lowell CA, Fumagalli L, Berton G. Deficiency of src-family kinases p59/61hek and p58c-fgr results in defective adhesion-dependent neutrophil functions. J Cell Biol 1996: 133:895.

    PubMed  CAS  Google Scholar 

  198. Brown EJ. Complement receptors and phagocytosis. Curr Opin Immunol 1991: 3:76.

    PubMed  CAS  Google Scholar 

  199. Graham IL, Lefkowith JB, Anderson DC, Brown EJ. Immune complex-stimulated neutrophil LTB4 production is dependent onβ 2 integrins. J Cell Biol 1993: 120:1509.

    PubMed  CAS  Google Scholar 

  200. Zhou MJ, Todd III RF, Winkel JGJ van de, Petty HR. Cocapping of the leukoadhesin molecules complement receptor type 3 and lymphocyte function-associated antigen-1 with Fcγ receptor III on human neutrophils. J Immunol 1993: 150:3030.

    PubMed  CAS  Google Scholar 

  201. Xue W, Kindzelskii L, Todd III RF, Petty HR. Physical association of complement receptor type 3 and urokinase-type plasminogen activator receptor in neutrophil membranes. J Immunol 1994: 152:4630.

    PubMed  CAS  Google Scholar 

  202. Lisanti MP, Scherer PE, Tang Z, Sargiacomo M. Cavcolae, caveolin, and caveolin-rich membrane domains: a signaling hypothesis. Trends cell Biol 1992: 2:358.

    Google Scholar 

  203. Yan SR, Fumagalli L, Berton G. Activation ofSRC family kinases in human neutrophils. Evidence that p58c-fgr and p53/56lyn redistributed to a Triton-insoluble cytoskeletal fraction, also enriched in the caveolar proteinCaveolin, display an enhanced kinase activity. FEBS Lett 1996: 380:198.

    PubMed  CAS  Google Scholar 

  204. Entman ML, Youker K, Shoij T, Kukielka G, Shappell SB, Taylor AA, Smith CW. Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence. J Clin Invest 1992: 90:1335.

    PubMed  CAS  Google Scholar 

  205. Hardy MM, Flickinger AG, Riley DP, Weiss RH, Ryan US. Superoxide dismutase mimetics inhibit neutrophil-mediated human aortic endothelial cell injury in vitro. J Biol Chem 1994: 269:18535.

    PubMed  CAS  Google Scholar 

  206. Nakamura TY, Yamamoto I, Nishitani H, Matozaki T, Suzuki T, Wakabayashi S, Shigekawa M, Goshima K. Detachment of cultured cells from the substratum induced by the neutrophilderived oxidant NH2Cl: synergistic role of phosphotyrosine and intracellular Ca2+ concentration. J Cell Biol 1995: 131:509.

    PubMed  CAS  Google Scholar 

  207. Patel KD, Zimmermann GA, Prescott SM, McEver RP, McIntyre TM. Oxygen radicals induce human endothelial cells to express GAM-140 and bind neutrophils. J Cell Biol 1991: 112:749.

    PubMed  CAS  Google Scholar 

  208. Roebuck KA, Rahman A, Lakshminarayanan V, Janakidevi K. Malik AB. H2O2 and tumor necrosis factor-α active intercellular adhesion molecule-1 (ICAM-1) gene transcription through distinctcis-regulatory elements within the ICAM-1 promoter. J Biol Chem 1995: 270:18966.

    PubMed  CAS  Google Scholar 

  209. Patel KD, Zimmermann GA, Prescott SM, McIntyre TM. Novel leukocyte agonists are released by endothelial cells exposed to peroxide. J Biol Chem 1992: 267:15168.

    PubMed  CAS  Google Scholar 

  210. Karin M, Huner T. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol 1995: 5:747.

    PubMed  CAS  Google Scholar 

  211. Marui N, Offermann MK, Swerlick R, Kunsch C, Rosen CA, Ahmad M, Alexander RW, Medford RM. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest 1993: 92:1866.

    PubMed  CAS  Google Scholar 

  212. Kruskal BA, Shak S, Maxfield FR. Spreading of human neutrophils is immediately preceded by a large increase in cytoplasmic free calcium. Proc Natl Acad Sci USA 1986: 83:2919.

    PubMed  CAS  Google Scholar 

  213. Jaconi MEE, Rives RW, Schlegel W, Wollheim CB, Pittet D, Lew PD. Spontaneous and chemoattractant-induced oscillations of cytosolic free calcium in single adherent human neutrophils. J Biol Chem 1988: 263:10557.

    PubMed  CAS  Google Scholar 

  214. Marks PW, Maxfield FR. Transient increases in cytosolic free calcium appear to be required for migration of adherent human neutrophils. J Cell Biol 1990: 110:43.

    PubMed  CAS  Google Scholar 

  215. Ng-Sikorski J, Andersson R, Patarroyo M, Andersson T. Calcium signaling capacity of the CD11b/CD18 integrin on human neutrophils. Exp Cell Res 1991: 195:504.

    PubMed  CAS  Google Scholar 

  216. Jaconi MEE, Theler JM, Schlegel W, Appel RD, Wright SD, Lew PD. Multiple elevations of cytosolic-free Ca2+ in human neutrophils: initiation by adherence receptors of the integrin family. J Cell Biol 1991: 112:1249.

    PubMed  CAS  Google Scholar 

  217. Mandeville JTH, Maxfield FR. Calcium and signal transduction in granulocytes. Curr Opin Hematol 1996: 3:63.

    PubMed  CAS  Google Scholar 

  218. Löfgren R, Ng-Sikorski J, Sjölander A, Andersson T.β 2 Integrin engagement triggers actin polymerization and phosphatidyl inositol triphosphate formation in non-adherent human neutrophil. J Cell Biol 1993: 123:1597.

    PubMed  Google Scholar 

  219. Lawson MA, Maxfield FR. Ca2+ and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 1995: 377:75.

    PubMed  CAS  Google Scholar 

  220. Hendey B, Klee CB, Maxfield FR. Inhibition of neutrophil chemokinesis on vitronectin by inhibitors of calcineurin. Science 1992: 258:296.

    PubMed  CAS  Google Scholar 

  221. Schwartz MA, Brown EJ, Fazeli B. A 50 kDa integrin-associated protein is required for integrin-regulated calcium entry in endothelial cells. J Biol Chem 1993: 268:19931.

    PubMed  CAS  Google Scholar 

  222. Cooper D, Lindberg FP, Gamble JR, Brown EJ, Vadas MA. Transendothelial migration of neutrophils involves integrin-associated protein (CD47). Proc Natl Acad Sci USA 1995: 92:3978.

    PubMed  CAS  Google Scholar 

  223. Fällman M, Gullberg M, Hellberg C, Andersson T. Complement receptor-mediated phagocytosis is associated with accumulation of phosphatidylcholine-derived diglyceride in human neutrophils. Involvement of phospholipase D and direct evidence for a positive feed-back signal of protein kinase C. J Biol Chem 1992: 267:2656.

    PubMed  Google Scholar 

  224. Fällman M, Andersson R, Andersson T. Signalling properties of CR3 (CD11b/CD18) and CR1 (CD35) in relation to phagocytosis of complement-opsonized particles. J Immunol 1993: 151:330.

    PubMed  Google Scholar 

  225. Zigmond SH. Signal transduction and actin filament organization. Curr Opin Cell Biol 1996: 8:66.

    PubMed  CAS  Google Scholar 

  226. Burridge K, Fath K. Focal contacts: transmembrane links between the extracellular matrix and the cytoskeleton. Bioessays 1989: 4:104.

    Google Scholar 

  227. Damsky CH, Werb Z. Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information. Curr Opin Cell Biol 1992: 4:772.

    PubMed  CAS  Google Scholar 

  228. Sastry SK, Horwitz AF. Integrin cytoplasmic domains: mediators of cytoskeletal linkages and extra- and intracellular initiated transmembrane signalling. Curr Opin Cell Biol 1993: 5:819.

    PubMed  CAS  Google Scholar 

  229. Pavalko FM, LaRoche SM. Activation of human neutrophils induces an interaction between the integrinβ 2-subunit (CD18) and the actin binding protein α-actinin. J Immunol 1993: 151:3795.

    PubMed  CAS  Google Scholar 

  230. Sharma CP, Ezzel RM, Arnaout MA. Direct interaction of filamin (ABP-280) with theβ 2-integrin subunit CD18. J Immunol 1995: 154:3461.

    PubMed  CAS  Google Scholar 

  231. Juliano RL, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol 1993: 120:577.

    PubMed  CAS  Google Scholar 

  232. Shattil SJ, Ginsberg MH, Brugge JS. Adhesive signaling in platelets. Curr Opin Cell Biol 1994: 6:695.

    PubMed  CAS  Google Scholar 

  233. Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science 1995: 268:233.

    PubMed  CAS  Google Scholar 

  234. Yamada KM, Miyamoto S. Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol 1995: 7:681.

    PubMed  CAS  Google Scholar 

  235. Bolen JB. Protein tyrosine kinases in the initiation of antigen receptor signaling. Curr Opin Cell Biol 1995: 7:306.

    CAS  Google Scholar 

  236. Schaller MD, Otey CA, Hildebrand JD, Parsons JT. Focal adhesion kinase and paxillin bind to peptides mimicking β-integrin cytoplasmic domains. J Cell Biol 1995: 130:1181.

    PubMed  CAS  Google Scholar 

  237. Miyamoto S, Akiyama SK, Yamada KM. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 1995: 267:883.

    PubMed  CAS  Google Scholar 

  238. Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol 1995: 131:791.

    PubMed  CAS  Google Scholar 

  239. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993: 260:1124.

    PubMed  CAS  Google Scholar 

  240. Ingber DE, Dike L, Hansen L, Karp S, Liley H, Maniotis A, McNamce H, Mooney D, Plopper G, Sims J, Wang N. Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int Rev Cytol 1994: 150:173.

    PubMed  CAS  Google Scholar 

  241. Forgacs G. On the possible role of cytoskeletal filamentous networks in intracellular signaling: an approach based on percolation. J Cell Sci 1995: 108:2131.

    PubMed  CAS  Google Scholar 

  242. Berton G, Fumagalli L, Laudanna C, Sorio C.β 2 Integrin-dependent protein tyrosine phosphorylation and activation of the FGR protein tyrosine kinase in human neutrophils. J Cell Biol 1994: 126:1111.

    PubMed  CAS  Google Scholar 

  243. Rafiee P, Lee JK, Leung CC, Raffin TA. TNF-α induces tyrosine phosphorylation of mitogen-activated protein kinase in adherent human neutrophils. J Immunol 1995: 154:4785.

    PubMed  CAS  Google Scholar 

  244. Graham IL, Anderson DC, Holers VM, Brown EJ. Complement receptor 3 (CR3, Mac-1, integrinα M β 2, CD11b/CD18) is required for tyrosine phosphorylation of paxillin in adherent and non adherent neutrophils. J Cell Biol 1994: 127:1139.

    PubMed  CAS  Google Scholar 

  245. Fuortes M, Jin WW, Nathan CF.β 2 Integrin-dependent tyrosine phosphorylation of paxillin in human neutrophils treated with tumor necrosis factor. J Cell Biol 1994: 127:1477.

    PubMed  CAS  Google Scholar 

  246. Yan SR, Fumagalli L, Berton G. Activation of p58c-fgr and p53/56lyn in adherent human neutrophils: evidence for a role of divalent cations in regulating neutrophil adhesion and protein tyrosine kinase activities. J Inflammation 1995: 45:297.

    CAS  Google Scholar 

  247. Lin TH, Rosales C, Mondal K, Bolen JB, Haskill S, Juliano RL. Integrin-mediated tyrosine phosphorylation and cytokine message induction in monocytic cells. A possible signaling role for the syk tyrosine kinase. J Biol Chem 1995: 270:16189.

    PubMed  CAS  Google Scholar 

  248. Lowell CA, Soriano P, Varmus HE. Functional overlap in thesrc gene family: inactivation ofhck andfgr impairs natural immunity. Genes Dev 1994: 8:387.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berton, G., Yan, S.R., Fumagalli, L. et al. Neutrophil activation by adhesion: mechanisms and pathophysiological implications. Int J Clin Lab Res 26, 160–177 (1996). https://doi.org/10.1007/BF02592978

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592978

Key words

Navigation