Skip to main content
Log in

Left ventricular external constraint: Relationship between pericardial, pleural and esophageal pressures during positive end-expiratory pressure and volume loading in dogs

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Left ventricular (LV) diastolic filling is limited by the constraining effects exerted by the pericardium (PE) and the lung/chest wall. The aim of the present study was to assess the validity of various estimates of external cardiac constraint, compared to pericardial surface pressure (Ppe) measured lateral to the LV myocardium. In nine anesthetized dogs we measured Ppe, pleural surface pressure (Ppl) (lateral to the pericardium) and esophageal pressure (Pes) under conditions of volume loading and positive end-expiratory pressure (PEEP). We measured Ppe and Ppl with flat, liquidcontaining silastic rubber balloons and Pes with an air-containing cylindrical balloon. After instrumentation, the chest was resealed and continuous suction (−5 mm Hg, 1 mm Hg=0.133 kPa) was maintained. Volume loading with incremental intravenous infusions of saline was used to increase LV end-diastolic pressure to 20–25 mm Hg. PEEP of 0, 10 and 20 mm Hg were applied at baseline and after each increment of volume loading. At low volume, increases in PEEP caused simultaneous increases in LV end-diastolic pressure (P<0.01) and in Ppe (P<0.0001) but a reduction in transmural LV pressure (P<0.0005). Ppl and Pes both increased with PEEP (P<0.001 and P<0.01, respectively). However, Ppe always exceeded Ppl, while Pes remained at only approximately 1/3 Ppl throughout. Volume loading caused a significant increase in Ppe (P<0.0001) and a smaller, but significant increase in Ppl (P<0.05). Pes remained unchanged during volume loading. Thus external cardiac constraint increased markedly during volume loading and PEEP as evidenced by a marked elevation of Ppe. Both Ppl and Pes markedly underestimated this increase. Therefore, calculation of transmural LV pressure by subtracting pleural or esophageal pressure from intracavitary pressure can lead to overestimation of LV preload. The decrease in cardiac output during PEEP occurs secondary to decreased preload, i.e. decreased transmural pressure and end-diastolic dimension. Analysis of performance using cardiac function curves does not suggest a change in contractility with PEEP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LV:

Left ventricle

RV:

Right ventricle

EDP:

End-diastolic pressure

P pe :

Pericardial surface pressure

P pl :

Pleural surface pressure

P es :

Esophageal pressure

PEEP:

Positive end-expiratory pressure

References

  1. Agostoni, E. Mechanics of the pleural space. In:Handbook of Physiology, Volume III, The respiratory system, edited by A.P. Fishman, P.T. Macklem, J. Mead and S.R. Geiger, Bethesda: American Physiological Society, 1986, pp. 531–558.

    Google Scholar 

  2. Braunwald, E. and J. Ross. The ventricular end-diastolic pressure. Appraisal of its value in the recognition of ventricular failure in man. (Editorial)Am. J. Med. 34:147–150, 1963.

    Article  PubMed  CAS  Google Scholar 

  3. Calvin, J.E., A.A. Driedger and W.J. Sibbald. Positive end-expiratory pressure does not depress left ventricular function in patients with pulmonary edema.Am. Rev. Resp. Dis. 124:121–128, 1981.

    PubMed  CAS  Google Scholar 

  4. Cassidy, S.S. and J.H. Mitchell. Effects of positive pressure breathing on right and left ventricular preload and afterload.Fed. Proc. 40:2178–2181, 1981.

    PubMed  CAS  Google Scholar 

  5. Cassidy, S.S., J.H. Mitchell and R.L. Johnson. Dimensional analysis of RV and LV during positive pressure ventilation in dogs.Am. J. Physiol. 242:H549–H556, 1982.

    PubMed  CAS  Google Scholar 

  6. Cournand, A., H.L. Motley, L. Werko and D.W. Richards. Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man.Am. J. Physiol. 152:162–174, 1948.

    PubMed  CAS  Google Scholar 

  7. Craven, K.D. and L.D.H. Wood. Extrapericardial and esophageal pressures with positive end-expiratory pressures in dogs.J. Appl. Physiol.: Resp. Env. Exc. Physiol. 51:798–805, 1981.

    CAS  Google Scholar 

  8. Dhainaut, J.F., C. Bricard, J.J. Monsallier, O. Salmon, J. Bons, V. Fourestie, B. Schlemmer and A. Carli. Left ventricular contractility using isovolumic phase indices during positive end-experatory pressure in ARDS patients.Crit. Care. med. 10:631–635, 1982.

    Article  PubMed  CAS  Google Scholar 

  9. Ditchey, R.V., D. Costello and R. Shabetai. Effects of airway pressure and lung volume on left ventricular transmural pressure-volume relationship in humans.Am. Heart. J. 106:46–51, 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Fewell, J.E., D.R. Abendschein, C.J. Carlson, E. Rapaport and J.F. Murray. Mechanism of decreased right and left ventricular end-diastolic volumes during CPPV in dogs.Circ. Res. 47:467–472, 1980.

    PubMed  CAS  Google Scholar 

  11. Fewell, J.E., D.R. Abendschein, C.J. Carlson, J.F. Murray and E. Rapaport. Continuous positive pressure ventilation decreases right and left ventricular end-diastolic volumes in the dog.Circ. Res. 46:125–132, 1980.

    PubMed  CAS  Google Scholar 

  12. Grindlinger, G.A., T. Utsunomiya, A. Vegas, L.L. Levine, D. Shepro and H.B. Hechtman. Prostaglandin mediation of unstable hemodynamics during lung perfusion.Surgery 92:52–60, 1982.

    PubMed  CAS  Google Scholar 

  13. Haynes, J.B., S.D. Carson, W.P. Whitney, G.O. Zerbe, T.M. Hyers and P. Steele. Positive end-expiratory pressure shifts left ventricular diastolic pressure-area curves.J. Appl. Physiol. 48:670–676, 1980.

    PubMed  CAS  Google Scholar 

  14. Hobelmann, C.F., D.E. Smith, R.W. Virgilio, A.R. Shapiro and R.M. Peters. Hemodynamic alterations with positive end-expiratory pressure: The contribution of the pulmonary vasculature.J. Trauma 15:951–958, 1975.

    Article  PubMed  Google Scholar 

  15. Hoppin, F.G. Jr., I.D. Green and J. Mead. Distribution of pleural surface pleural pressure in dogs.J. Appl. Physiol. 27:863–873, 1969.

    PubMed  Google Scholar 

  16. Jardin, F., J.C. Farcot, L. Boisante, N. Curien, A. Margairaz and J.P. Bourdarias. Influence of PEEP on LV performance.New Engl. J. Med. 304:387–392, 1981.

    Article  PubMed  CAS  Google Scholar 

  17. Jardin, F. and J.C. Farcot. Influence de la respiration sous pression positive tele-expiratoire sur la fonction ventriculaire gauche.Nouv. Presse Med. 11:2143–2145, 1982.

    PubMed  CAS  Google Scholar 

  18. Kingma, I., J.V. Tyberg and E.R. Smith. Effects of diastolic transseptal pressure gradient on ventricular septal position and motion.Circulation 68:1304–1314, 1983.

    PubMed  CAS  Google Scholar 

  19. Lloyd, T.C. Mechanical cardiopulmonary interdependence.J. Appl. Physiol.: Resp. Env. Exc. Physiol. 52:333–339, 1982.

    Google Scholar 

  20. Marini, J.J., B.H. Culver and J. Butler. Mechanical effect of lung distension with positive pressure on cardiac function.Am. Rev. Resp. Dis. 124:382–386, 1981.

    PubMed  CAS  Google Scholar 

  21. Marini, J.J., B.H. Culver and J. Butler. Effect of positive end-expiratory pressure on canine ventricular function curves.J. Appl. Physiol.: Resp. Env. Exc. Physiol. 51:1367–1384, 1981.

    CAS  Google Scholar 

  22. Marini, J.J., R. O'Quin, B.H. Culver and J. Butler. Estimation of transmural cardiac pressures during ventilation with PEEP.J. Appl. Physiol.: Resp. Env. Exc. Physiol. 53:1374–1381, 1982.

    Google Scholar 

  23. McMahon, S.M., S. Permutt and D.F. Proctor. A model to evaluate pleural surface pressure measuring devices.J. Appl. Physiol. 27:886–891, 1969.

    PubMed  CAS  Google Scholar 

  24. Morris, A.L., S.W. Rabkin, B. Ayotte and G.P. Sharma. Role of the pericardium and intact chest wall in the hemodynamic response to positive end-expiratory pressure.Can. J. Physiol. Pharm. 59:45–52, 1981.

    CAS  Google Scholar 

  25. Parker, J. and R.B. Case. Normal left ventricular function.Circulation 60:4–12, 1979.

    PubMed  CAS  Google Scholar 

  26. Prewitt, R.M. and L.D.H. Wood. Effect of positive end-expiratory pressure on ventricular function in dogs.Am. J. Physiol. 236:H534–H544, 1979.

    PubMed  CAS  Google Scholar 

  27. Prewitt, R.M., L. Oppenheimer, J.B. Sutherland and L.D.H. Wood. Effect of positive end-expiratory pressure on left ventricular mechanics in patients with hypoxemic respiratory failure.Anesthesiology 55:409–415, 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Qvist, J., H. Pontoppidon, R.S. Wilson, E. Lowenson and M.B. Laver. Hemodynamic responses to mechanical ventilation with PEEP. The effect of hypervolemia.Anesthesiology 45:45–55, 1975.

    Article  Google Scholar 

  29. Rabkin, S.W., A.L. Morris, G.P. Sharma and B. Ayotte. Comparison of hemodynamic responses to positive end-expiratory ventilation and pericardial effusion in dogs.Clin. Exp. Pharm. Physiol. 7:183–193, 1980.

    CAS  Google Scholar 

  30. Rankin, J.S., C.O. Olsen, C.E. Arentzen, G.S. Tyson, G. Maier, P.K. Smith, J.W. Hammon, J.W. Davis, P.A. McHale, R.W. Anderson and D.C. Sabiston. The effects of airway pressure on cardiac function in intact dogs and man.Circulation 66:108–120, 1982.

    PubMed  CAS  Google Scholar 

  31. Robotham, J.L., W. Lixfield, D. Holland, D. MacGregor, B. Bromberger-Barnea, S. Permutt and J.L. Rabson. The effects of positive end-expiratory pressure on right and left ventricular performance.Am. Rev. Resp. Dis. 121:677–683, 1981.

    Google Scholar 

  32. Robotham, J.L., R.C. Bell, F.R. Badke and M.K. Kindred. Left ventricular geometry during positive end-expiratory pressure in dogs.Crit. Care Med. 13:617–624, 1985.

    Article  PubMed  CAS  Google Scholar 

  33. Santamore, W.P., A.A. Bove and J.L. Heckman. Right and left ventricular pressure-volume response to positive end-expiratory pressure.Am. J. Physiol. 246:H114–H119, 1984.

    PubMed  CAS  Google Scholar 

  34. Scharf, S.M., R. Brown, N. Saunders and L.H. Green. Effects of normal and loaded spontaneous inspiration on cardiovascular function.J. Appl. Physiol. 47:582–590, 1979.

    PubMed  CAS  Google Scholar 

  35. Scharf, S.M., R. Brown, N. Saunders, L.H. Green and R.H. Ingram. Changes in canine left ventricular size and configuration with positive end-expiratory pressure.Circ. Res. 44:672–678, 1979.

    PubMed  CAS  Google Scholar 

  36. Scharf, S.M. and R. Brown. Influence of right ventricle on canine left ventricular function with positive end-expiratory pressure.J. Appl. Physiol.: Resp. Env. Exc. Physiol. 52:254–259, 1982.

    CAS  Google Scholar 

  37. Schreuder, J.J., J.R.C. Jansen and A. Versprille. Hemodynamic effects of PEEP applied as a ramp in normo-, hyper- and hypovolemia.J. Appl. Physiol. 59:1178–1184, 1985.

    PubMed  CAS  Google Scholar 

  38. Smiseth, O.A., M.A. Frais, I. Kingma, E.R. Smith and J.V. Tyberg. Assessment of pericardial constraint in dogs.Circulation 77:158–164, 1985.

    Google Scholar 

  39. Smiseth, O.A., M.A. Frais, I. Kingma, A.V.M. White, M.L. Knudtson, J.M. Cohen, D.E. Manyari, E.R. Smith and J.V. Tyberg. Assessment of pericardial constraint: The relation between ventricular filling pressure and pericardial pressure measured after pericardiocentesis.J. Am. Coll. Cardiol. 7:307–314, 1986.

    Article  PubMed  CAS  Google Scholar 

  40. Stinnett, H.O. Altered cardiovascular reflex responses during positive pressure breathing.Fed. Proc. 40:2182–2187, 1981.

    PubMed  CAS  Google Scholar 

  41. Tyberg, J.V., G.C. Taichman, E.R. Smith, N.W.S. Douglas, O.A. Smiseth and W.J. Keon. The relationship between pericardial pressure and right atrial pressure: An intraoperative study.Circulation 73:428–432, 1986.

    PubMed  CAS  Google Scholar 

  42. Utsonomiya, T., M.M. Krausz, B. Dunham, D. Shepro and H.B. Hechtman. Depression of myocardial ATP-ase activity by plasma obtained during positive end-expiratory pressure.Surgery 91:322–328, 1982.

    Google Scholar 

  43. Van Trigt, P., T.L. Spray, M.K. Pasque, R.B. Peyton, G.L. Pellom, C.M. Christian, L. Fagraeus and A.S. Wechsler. The effect of PEEP on left ventricular diastolic dimensions and systolic performance following myocardial revascularization.Ann. Thor. Sur. 6:585, 1982.

    Article  Google Scholar 

  44. Wallis, T.W., J.L. Robotham, R. Compean and M.K. Kindred. Mechanical heart-lung interaction with positive end-expiratory pressure.J. Appl. Physiol.: Resp. Env. Exc. Physiol. 54:1039–1047, 1983.

    CAS  Google Scholar 

  45. Wise, R.A., J.L. Robotham, B. Bromberger-Barnea and S. Permutt. Effect of Positive end-expiratory pressure on left ventricular function in right heart bypassed dogs.J. Appl. Physiol.: Resp. Env. Exc. Physiol. 51:541–546, 1981.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kingma, I., Smiseth, O.A., Frais, M.A. et al. Left ventricular external constraint: Relationship between pericardial, pleural and esophageal pressures during positive end-expiratory pressure and volume loading in dogs. Ann Biomed Eng 15, 331–346 (1987). https://doi.org/10.1007/BF02584288

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584288

Keywords

Navigation