Skip to main content
Log in

GABA transporters inDrosophila melanogaster: molecular cloning, behavior, and physiology

  • Original Articles
  • Published:
Invertebrate Neuroscience

Abstract

Molecular cloning of GABA transporter-homologous cDNAs from aDrosophila melanogaster headspecific library was accomplished using a conserved oligomer from a highly conserved domain within the mammalian GABA transporters. Partial DNA sequencing of these cDNAs demonstrated homology with the mammalian transporters, indicating these are ancient, evolutionarily conserved molecules. Although theDrosophila cDNAs had distinct restriction enzyme patterns, they recognized the same locus inDrosophila genomic DNA, suggesting that the multiple isoforms might arise via alternative splicing. Antibodies specific for the mammalian GABA transporters GAT1, GAT2 and GAT3 recognized non-overlapping and developmentally distinct patterns of expression inDrosophila neuronal tissues. Treatment of larval instars with nipecotic acid, a generalized GABA reuptake inhibitor, revealed specific, dose-dependent alterations in behavior consistent with the presence of multiple transporter molecules with differing affinities for this drug. Synaptic current recordings revealed that nipecotic acid treated larvae have an increase in latency jitter of evoked quantal release, resulting in a broader average excitatory junctional current which was manifested in a broader EJP. These results imply that alterations in the development of the CNS occur if GABAergic neurotransmission is protentiated during development. The data suggest that, as in mammals, there are multiple GABA transporters inDrosophila whose expression is differentially regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atwood, H. L., Govind, C. K. and Wu, C.-F. (1993) Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles inDrosophila larvae.J. Neurobiol.,24, 1008–1024.

    Article  PubMed  CAS  Google Scholar 

  • Atwood, H. L. and Cooper, R. L. (1995) Functional and structural parallels in crustaceans andDrosophila neuromuscular systems.American Zool.,35, 556–565.

    Google Scholar 

  • Atwood, H. L. and Cooper, R. L. (1996a) Ultrastructure of crustacean and insect neuromuscular junctions.J. Neurosci. Methods,69, 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Atwood, H. L. and Cooper, R. L. (1996b) Synaptic diversity and differentiation: crustacean neuromuscular junctions.Invertebrate Neuroscience,1, 291–307.

    Article  Google Scholar 

  • Blakely, R., Berson, H., Fremeau, R., Caron, M., Peek, M., Prince, H. and Bradley, C. (1991) Cloning and expression of a functional serotonan transporter from rat brain.Nature,354, 66–70.

    Article  PubMed  CAS  Google Scholar 

  • Buchner, E., Bader, R., Buchner, S. and Cox, J. (1988) Cell specific immuno-probes for the brain of normal and mutantDrosophila melanogaster. l. Wildtype visual system.Cell and Tiss. Res.,253, 357–370.

    CAS  Google Scholar 

  • Campos-Ortega, J. and Hartenstein, V. (1985)The Embryonic Development of Drosophila melanogaster. Springer Verlag, Berlin.

    Google Scholar 

  • Chen, P. and Widmer, B. (1968) Content and synthesis of λ-aminobutyric acid in the larval brain ofDrosophila melanogaster.Experientia,24, 516–517.

    Article  PubMed  CAS  Google Scholar 

  • Cherubini, E., Gaiarsa, J. L. and Ben-Ari, Y. (1991) GABA: an excitatory transmitter in early postnatal life.Trends Neurosci.,14, 515–519.

    Article  PubMed  CAS  Google Scholar 

  • Clark, J. A., and Amara, S. G. (1994) Stable expression of a neuronal λ-aminobutyric acid transporter, GAT-3, in mammalian cells demonstrates unique pharmacological properties and ion dependence.Mol. Pharmacol.,46, 550–557.

    PubMed  CAS  Google Scholar 

  • Clark, J. A., Deutch, A. Y., Gallipoli, P. Z. and Amara, S. G. (1992) Functional expression and CNS distribution of β-alanine sensitive neuronal GABA transporter.Neuron,9, 337–347.

    Article  PubMed  CAS  Google Scholar 

  • Cobb, M., Bruneau, S. and Jallon, J.-M. (1992) Genetic and developmental factors in the olfactory response ofDrosophila melanogaster larvae to alcohols.Proc. R. Soc. London B.,248, 103–109.

    Article  CAS  Google Scholar 

  • Cooper, R. L., Stewart, B. A., Wojtowicz, J. M., Wang, S. and Atwood, H. L. (1995a) Quantal measurement and analysis methods compared for crayfish andDrosophila neuromuscular junctions and rat hippocampus.J. Neurosci. Methods,61, 67–79.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, R. L., Marin, L. and Atwood, H. L. (1995b). Synaptic differentiation of a single motor neuron: conjoint definition of transmitter release, presynaptic calcium signals, and ultrastructure.J. Neuroscience,15, 4209–4222.

    CAS  Google Scholar 

  • Cooper, R. L., Hampson, D. and Atwood, H. L. (1996a) Synaptotagmin-like expression in the motor nerve terminals of crayfish.Brain Res.,703, 214–216.

    Article  Google Scholar 

  • Cooper, R. L., Harrington, C. C., Marin, L. and Atwood, H. L. (1996b) Quantal release at visualized terminals of a crayfish motor axon: intraterminal and regional differences.J. Comp. Neurol.,375, 583–600.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, R. L., Winslow, J., Govind, C. K. and Atwood, H. L. (1996c) Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release.J. Neurophysiol.,75, 2451–2466.

    PubMed  CAS  Google Scholar 

  • DeFeudis, F. (1982) GABA binding processes and behavior.Gen. Pharmacol.,14, 313–319.

    Google Scholar 

  • Dodge, F. A. and Rahamimoff, R. (1967) Cooperative action of calcium ions in transmitter release at the neuromuscular junction.J. Physiol.,193, 419–432.

    PubMed  CAS  Google Scholar 

  • Engles, W., Preston, C., Thompson, P. and Eggelston, W. (1986)In situ hybridization toDrosophila salivary chromosomes with biotinylated DNA probes and alkaline pohosphatase.BRL Focus,8, 6–8.

    Google Scholar 

  • Guastella, J., Nelson, H., Cayzyk, L., Keynan, S., Miedel, M., Davidson, N., Lester, H. and Kanner, B. (1990) Cloning and expression of a rat GABA transporter.Science,249, 1303–1306.

    Article  PubMed  CAS  Google Scholar 

  • Guimbal, C., Klostermann, A. and Kilimann, M. (1995) Phylogeneyic conservation of 4-aminobutyric acid (GABA) transporter isoforms: cloning and pharmacological characterization of a GABA/β-alanine transporter from Torpedo.Eur. J. Biochem.,234, 794–800.

    Article  PubMed  CAS  Google Scholar 

  • Honda, S., Yamamoto, M. and Salto, N. (1995) Immunocytochemical localization of 3 subtypes of GABA transporter isoforms.Mol. Brain Res.,33, 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Ikegaki, N., Saito, N., Hashima, M. and Tanaka, C. (1994) Production of specific antibodies against GABA transporter subtypes (GAT-1, GAT-2, GAT-3) and their application to immunocytochemistry.Mol. Brain Res.,26, 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, N., Salvaterra, P. and Itakura, K. (1985) Construction of an adultDrosophila head cDNA expression library with γgt11.Dros. Inf. Serv.,61, 89.

    Google Scholar 

  • Iverson, L. and Kravitz, E. (1968) The metabolism of GABA in the lobster nervous system. Uptake of GABA the nerve-muscle preparations.J. Neurochem.,15, 1141–1149.

    Article  Google Scholar 

  • Jursky, F. and Nelson, N. (1994) Developmental expression of GABA transporters GAT-1 and GAT-4 suggests involvement in brain maturation.J. Neurochem.,67, 857–867.

    Article  Google Scholar 

  • Katz, B. and Miledi, R. (1968) The role of calcium in neuromuscular facilitation.J. Physiol.,195, 481–492.

    PubMed  CAS  Google Scholar 

  • Krause, D., Ikeda, K. and Roberts, E. (1981) Dose-conductance relationships for GABA agonists and the effect of uptake inhibitors in crayfish stretch receptor neurons.Brain Res.,225, 319–332.

    Article  PubMed  CAS  Google Scholar 

  • Kurdyak, P., Atwood, H. L., Stewart, B. A. and Wu, C.-F. (1994) Differential physiology and morphology of motor axons to ventral longitudinal muscles in larvalDrosophila.J. Comp. Neurol.,350, 463–472.

    Article  PubMed  CAS  Google Scholar 

  • Lilly, M. and Carslon, J. (1990).smellblind, a gene required forDrosophila olfaction.Genetics,124, 293–302.

    PubMed  CAS  Google Scholar 

  • Liu, Q., Mandiyan, S., Lopez-Corcuera, B., Nelson, H. and Nelson, N. (1993) A rat brain cDNA encoding the neurotransmitter transporter with an unusual structure.FEBS Lett.,315, 114–118.

    Article  PubMed  CAS  Google Scholar 

  • Mbungu, D., Ross, L. and Gill, L., (1995) Cloning, functional expression and pharmacology of a GABA transporter fromManduca sexta.Arch. Biochem. Biophys.,318, 489–497.

    Article  PubMed  CAS  Google Scholar 

  • Meier, E., Hertz, L. and Schousboe, A. (1991) Neurotransmitters as developmental signals.Neurochem. Int.,19, 99–102.

    Article  Google Scholar 

  • Minelli, A., Brecha, N., Karschin, C., DeBiasi, S. and Conti, F. (1995) GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex.J. Neurosci.,15, 7754–7736.

    Google Scholar 

  • Muller, K. J., Nicholls, J. G. and Stent, G. S. (1981)Neurobiology of the Leech, p. 254. New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Neckameyer, W. (1996) Multiple roles for dopamine inDrosophila development.Dev. Biol.,176, 209–219.

    Article  PubMed  CAS  Google Scholar 

  • Paredes, R. and Agmo, A. (1992) GABA and behavior: the role of receptor subtypes.Neuroscience and Biobehavioral Rev.,16, 145–170.

    Article  CAS  Google Scholar 

  • Sanger, F., Nicklen, S. and Coulson, A. (1977) DNA sequencing with chain-terminating inhibitors.Proc. Natl. Acad. Sci. USA,74, 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Sewell, D., Burnet, B. and Connolly, K. (1975) Genetic analysis of larval feeding behavior inDrosophila melanogaster.Genet. Res. Camb.,24, 163–173.

    Google Scholar 

  • Shepherd, D. and Tyrer, N. (1985) Inhibition of GABA uptake potentiates the effects of exogenous GABA on locust skeletal muscle.Comp. Biochem. Physiol.,82C, 315–321.

    CAS  Google Scholar 

  • Shimada, S., Kitayama, S., Lin, C., Patel, A., Nanthakumar, E., Gregor, P., Kuhar, M. and Uhl, G. (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary cDNA.Science,254, 576–578.

    Article  PubMed  CAS  Google Scholar 

  • Southern, E. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol.,98, 503–517.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, B. A., Atwood, H. L., Renger, J. J., Wang, J. and Wu, C.-F. (1994) Improved stability ofDrosophila larval neuromuscular preparation in haemolymph-like physiological solutions.J. Comp. Physiol. A,175, 179–191.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, B. A., Schuster, C. M., Goodman, C. S. and Atwood, H. L. (1996) Homeostasis of synaptic transmission inDrosophila with genetically altered nerve terminal morphology.J. Neurosci.,16, 3877–3886.

    PubMed  CAS  Google Scholar 

  • Takahashi, K.-I., Miyoshi, S.-I., Kaneko, A. and Copenhagen, D. (1995) Actions of nipecotic acid and SKF89976A on GABA transporter in cone-driven horizontal cells dissociated from the catfish retina.Jap. J. Physiol.,45, 457–473.

    Article  CAS  Google Scholar 

  • Zucker, R. S. and Lara-Estrella, L. O. (1983) Post-tetanic decay of evoked and spontaneous transmitter release and a residual calcium model of synaptic facilitation at crayfish neuromuscular junctions.J. Gen. Physiol.,81, 355–372.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. S. Neckameyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neckameyer, W.S., Cooper, R.L. GABA transporters inDrosophila melanogaster: molecular cloning, behavior, and physiology. Invertebrate Neuroscience 3, 279–294 (1998). https://doi.org/10.1007/BF02577688

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02577688

Key words

Navigation