Skip to main content
Log in

The determination of bone fracture properties by dual-energy X-ray absorptiometry and single-photon absorptiometry: A comparative study

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Dual-energy X-ray absorptiometry (DEXA) and single-photon absorptiometry (SPA) were used to quantitate the structural strength and local material properties of healing tibial osteotomies in 32 dogs. Dogs were divided into four equal groups, euthanatized at either 2, 4, 8, or 12 weeks, and imaged with DEXA and SPA. Invasive techniques were used to determine (1) the torsional properties of the bone, (2) the local stiffness properties and calcium content within the bone, and (3) new bone formation and porosity by histology. There were no differences between SPA and DEXA in their associations with the torsional properties of bone. SPA and DEXA had strong correlations with the ultimate torque (R2=0.76, 0.51) and the torsional stiffness (R2=0.68, 0.53) of bone. SPA and DEXA of periosteal callus, endosteal callus, and cortical bone had similar associations with indentation stiffness, calcium content, new bone formation, and porosity. SPA of gap tissue had significantly stronger associations with these four parameters than DEXA (P<0.05). Correlation coefficients (R2) with these local material properties ranged as high as 0.82 for SPA with new bone formation in the gap tissue and 0.73 for DEXA with indentation stiffness of periosteal callus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazess RB (1983) Noninvasive bone measurements. In: Kunin A (ed) Skeletal research II, Academic Press, New York, pp 277–343

    Google Scholar 

  2. Aro HT, Wippermann BW, Hodgson SF, Wahner HW, Lewallen DG, Chao EYS (1989) Prediction of properties of fracture callus by measurement of mineral density using micro-bone densitometry. J Bone Joint Surg 71-A:1020–1030

    Google Scholar 

  3. Gerlanc M, Haddad D, Hyatt GW (1975) Ultrasonic study of normal and fractured bone. Clin Orthop 111:175–180

    Article  PubMed  Google Scholar 

  4. McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg 67-A:1206–1214

    Google Scholar 

  5. Adams JE, Chen SZ, Adams PH, Isherwood I (1982) Measurement of trabecular bone mineral by dual energy computed tomography. J Comput Assist Tomogr 6:601–607

    PubMed  CAS  Google Scholar 

  6. Cann CE, (1988) Quantitative CT for determination of bone mineral density: a review. Radiology 166:509–522

    PubMed  CAS  Google Scholar 

  7. Eriksson SAV, Isberg BO, Lindgren JU (1989) Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography. Calcif Tissue Int 44:243–250

    PubMed  CAS  Google Scholar 

  8. Borders J, Kerr E, Sartoris DJ, Stein JA, Ramos E, Moscona AA, Resnick D (1989) Quantitative dual-energy radiographic absorptiometry of the lumbar spine: in vivo comparison with dual-photon absorptiometry. Radiology 170:129–131

    PubMed  CAS  Google Scholar 

  9. Sorenson JA, Camerson JR (1967) A reliable in vivo measurement of bone mineral content. J Bone Joint Surg 49-A:481–497

    Google Scholar 

  10. Borders S, Peterson KR, Orne D (1977) Prediction of bending strength of long bones from measurements of bending stiffness and bone mineral content. J Biomech Eng 99:40–44

    Google Scholar 

  11. Jurist JM, Foltz AS (1977) Human ulnar bending stiffness, mineral content, geometry and strength. J Biomech 10:455–459

    Article  PubMed  CAS  Google Scholar 

  12. Leichter I, Margulies JY, Weinreb A, Mizrahi J, Robin GC, Conforty B, Makin M, Bloch B (1982) The relationship between bone density, mineral content, and mechanical strength in the femoral neck. Clin Orthop 163:272–281

    PubMed  Google Scholar 

  13. Mazess RB, Collick B, Trempe J, Barden H, Hanson J (1989) Performance evaluation of a dual-energy X-ray bone densitometer. Calcif Tissue Int 44:228–232

    PubMed  CAS  Google Scholar 

  14. Wahner HW, Dunn WL, Brown ML, Morin RL, Riggs BL (1988) Comparison of dual-energy x-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine. Mayo Clin Proc 63:1075–1084

    PubMed  CAS  Google Scholar 

  15. Pacifici R, Rupich R, Vered I, Fischer KC, Griffin M, Susman N, Avioli LV (1988) Dual energy radiography (DER): a preliminary comparative study. Calcif Tissue Int 43:189–191

    PubMed  CAS  Google Scholar 

  16. Beljan JR, Hellewell AB, Goldman M (1971) The effect of calcium deficiency on healing of experimental fractures in the avian tarsus as determined by the fracture repair ratio. Clin Orthop 78:277–285

    Article  PubMed  CAS  Google Scholar 

  17. Finsen V, Haave (1987) Changes in bone mass after tibial shaft fracture. Acta Orthop Scand 58:369–371

    Article  PubMed  CAS  Google Scholar 

  18. Hellewell AB, Beljan JR, Goldman M (1975) The effect of diethylstilbestrol on the rate of osseous repair bone integrity, and plasma calcium in the adult avain. Calcif Tissue Res 18:233–239

    Article  PubMed  CAS  Google Scholar 

  19. Hellewell AB (1980) Absorptiometric quantitation of experimental fracture mineralization. 4th Int Conf Bone Mineral Measure. NIH Publ. 80-1938, pp. 121–126

  20. Lewallen DG, Chao EYS, Kasman RA, Kelly PJ (1984) Comparison of the effects of compression plates and external fixators on early bone healing. J Bone Joint Surg 66-A:1084–1091

    Google Scholar 

  21. Rand JA, An KN, Chao EYS, Kelly PJ (1981) A comparison of the effect of open intramedullary nailing and compressionplate fixation on fracture site blood flow and fracture union. J Bone Joint Surg 63-A:427–442

    Google Scholar 

  22. Rhinelander FW, Phillips RS, Steel WM, Beer JC (1968) Microangiography in bone healing. I. Displaced closed fractures. J Bone Joint Surg 50-A:643–662

    Google Scholar 

  23. Harris WH, Lavorgna J, Hamblen DL, Haywood EA (1968) The inhibition of ossification in vivo. Clin Orthop 61:52–60

    PubMed  CAS  Google Scholar 

  24. Moore R, Wahner H (1974) The measurement of bone mineral. Appl Radiol 3:63–67

    Google Scholar 

  25. Wahner HW, Riggs BL, Beabout JW (1977) Diagnosis of osteoporosis: usefulness of photon absorptiometry at the radius. J Nucl Med 18:432–437

    PubMed  CAS  Google Scholar 

  26. Falkenberg J (1961) An experimental study of the rate of fracture healing. Acta Orthop Scand (suppl) 50:7–98

    Google Scholar 

  27. Burstein AH, Frankel VH (1971) A standard test for laboratory animal bone. Technical note. J Biomech 4:155–158

    Article  PubMed  CAS  Google Scholar 

  28. Nixon DE, Moyer TP, Johnson P, McCall JT, Ness AB, Fjerstad WH, Wehde MB (1986) Routine measurement of calcium, magnesium, copper, zinc, and iron in urine and serum by inductively coupled plasma emission spectroscopy. Clin Chem 32:1660–1665

    PubMed  CAS  Google Scholar 

  29. Baron R, Vignery A, Neff L, Silverglate A, Maria AS (1979) Processing of undecalcified bone specimens, for bone histomorphometry. In: Recker RR (ed) Bone histomorphometry techniques and interpretation. CRC Press, New York, pp 13–35

    Google Scholar 

  30. Hodgson SF (1986) Skeletal remodeling and renal osteodystrophy. Seminars Nephrology 6:42–55

    CAS  Google Scholar 

  31. Jowsey J, Kelly PJ, Riggs B, Bianco AJ, Scholz DA, Gershon-Cohen J (1965) Quantitative microradiographic studies of normal and osteoporotic bone. J Bone Joint Surg 47-A:785–806.

    Google Scholar 

  32. Kelly PH, Peterson LFA, Janes JM (1959) A method of using sections for microangiography for subsequent histology study. Proc Staff Meet Mayo Clin 34:274–283

    CAS  PubMed  Google Scholar 

  33. Aro HT, Wahner HW, Kelly PJ, Chao EYS (1989) Comparison of stable transverse and unstable oblique osteotomy healing in the canine tibia under external fixation. Trans Orthop Res Soc 14:121

    Google Scholar 

  34. Chin HC, Frassica FJ, Markel MD, Frassica DA, Schray MF, Sim FH, Chao EYS (1989) The effect of therapeutic irradiation on bone ingrowth and extracortical bone formation in porous-coated prosthetic components. Trans Orthop Res Soc 14:555

    Google Scholar 

  35. Lewallen DG, Aro HT, Chao EYS, Berquist TH, Kelly PJ (1988) Noninvasive evaluation of bone healing using quantitative MRI imaging. Trans Orthop Res Soc 13:409

    Google Scholar 

  36. Frost HM (1983) Bone histomorphometry: choice of marking agent and labeling schedule. In: Recker RR (ed) Bone histomorphometry: techniques and interpretation, CRC Press, Boca Raton, pp 37–52

    Google Scholar 

  37. Vanderhoeft PJ, Kelly PJ, Peterson LFA (1967) Determination of growth rates in canine bone by means of tetracyclinelabeled patterns. Lab Invest 11:714–726

    Google Scholar 

  38. Aro H, Kelly PJ, Lewallen DG, Chao EYS (1988) Comparison of the effects of dynamization and constant rigid fixation on rate and the quality of bone osteotomy union in external fixation. Trans Orthop Res Soc 13:303

    Google Scholar 

  39. Hart MB, Wu J, Chao EYS, Kelly PJ (1985) External skeletal fixation of canine tibial osteotomies. J Bone Joint Surg 67-A:598–605

    Google Scholar 

  40. Wu J, Shyr HS, Chao EYS, Kelly PJ (1984) Comparison of osteotomy healing under external fixation devices with different stiffness characteristics. J Bone Joint Surg 66-A:1258–1264

    Google Scholar 

  41. Cruess RL, Dumont J (1975) Fracture healing. Can J Surg 18:403–413

    PubMed  CAS  Google Scholar 

  42. Sevitt S (1980) Healing of fractures in man. In: Owen R, Goodfellow J, Bullough P (eds) Scientific foundations of orthopedics and traumatology WB Saunders, Philadelphia, pp 258–272

    Google Scholar 

  43. Wahner HW, Riggs BL (1986) Methods and application of bone densitometry in clinical diagnosis. Crit Rev Clin Lab Sci 24:217–233

    PubMed  CAS  Google Scholar 

  44. Hayes WC, Carter DR (1979) Biomechanics of bone. In: Simmons DJ, Kunin AS (eds) Skeletal research. Academic Press, New York, pp 263–300

    Google Scholar 

  45. Aitken GK, Bourne RB, Finlay JB, Rorabeck CH, Andreae PR (1985) Indentation stiffness of the cancellous bone in the distal human tibia. Clin Orthop 201:264–270

    PubMed  Google Scholar 

  46. Linde F, Gothgen CB, Hvid I, Pongsoipetch B (1988) Mechanical properties of trabecular bone by a non-destructive compression testing approach. Eng Med 17:23–29

    PubMed  CAS  Google Scholar 

  47. Mazess RB, Wahner HW (1988) Nuclear medicine and densitometry. In: Riggs BL, Melton LJ (eds) Osteoporosis: etiology, diagnosis, and management. Raven Press, New York, pp 251–295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markel, M.D., Wikenheiser, M.A., Morin, R.L. et al. The determination of bone fracture properties by dual-energy X-ray absorptiometry and single-photon absorptiometry: A comparative study. Calcif Tissue Int 48, 392–399 (1991). https://doi.org/10.1007/BF02556452

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556452

Key words

Navigation