Skip to main content
Log in

Use of a μ-antisense oligodeoxynucleotide as a μ opioid receptor noncompetitive antagonist in vivo

  • Physiology and Behavior
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We examined whether μ-antisense (AS) oligodeoxynucleotide (oligo) treatment can be used in a manner similar to the μ-selective irreversible antagonist β-funaltrexamine (β-FNA) for in vivo pharmacology. Rats were injected intracerebroventricularly (icv) with a μ-AS or a missense (MS) oligo on days 1, 3, 5, 7, and 9 and were tested for the antinociceptive effect of sc injection of morphine on days 2, 4, 6, 8, and 10 in the cold water tail-flick (CWT) test. In another set of experiments, rats were also tested for the antinociceptive action of morphine twenty-four hours after icv injection of β-FNA. Both β-FNA and μ-AS produced rightward shifts in the dose-effect curves of morphine. In addition, pretreatment with 2.5 μg or more of β-FNA or the μ-AS oligo for 5–9 days (but not for 1–3 days) reduced the maximal analgesic effect of morphine. The approximate fraction of functional receptor remaining for morphine was determined with the method of Furchgott to be 49.5% following 2.5 μg of β-FNA; that after 5 days of the μ-AS oligo treatment was 50.8%. The results suggest that the μ-AS oligo can be used in the same manner as highly selective, irreversible μ opioid receptor ligands. Thus, properly designed AS oligos against receptors are of particular benefit when irreversible antagonists are not available. AS oligos represent a new class of selective and powerful pharmacological antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, M. W., and Geller, E. B. 1993. Physiological functions of opioids: temperature regulation. Pages 205–238,in Herz, A. (ed), Handbook of Experimental Pharmacology, Vol. 104/II, Opioids II, Springer-Verlag, Berlin.

    Google Scholar 

  2. Chen, Y., Mestek, A., Liu, J., Hurley, J. A., and Yu, L. 1993. Molecular cloning and functional expression of a μ-opioid receptor from rat brain. Mol. Pharmacol. 44:8–12.

    PubMed  CAS  Google Scholar 

  3. Evans, C. J., Keith, D. E., Jr., Morrison, H., Magendzo, K., and Edwards, R. H. 1992. Cloning of a delta opioid receptor by functional expression. Science 258:1952–1955.

    Article  PubMed  CAS  Google Scholar 

  4. Kieffer, B. L., Befort, K., Gaveriaux-Ruff, C., and Hirth, C. G. 1992. The δ-opioid receptor: Isolation of a cDNA by expression cloning and pharmacological characterization. Proc. Natl. Acad. Sci. USA. 89:12148–12152.

    Article  Google Scholar 

  5. Li, S., Zhu, J., Chen, C., Chen, Y.-W., DeRiel, J. K., Ashby, B., and Liu-Chen, L.-Y. 1993. Molecular cloning and expression of a rat κ opioid receptor. Biochem. J. 295:629–633.

    PubMed  CAS  Google Scholar 

  6. Yasuda, K., Raynor, K., Kong, J., Breder, C. D., Takeda, J., Reisine, T., and Bell, G. I. 1993. Cloning and functional comparison of κ and δ opioid receptors from mouse brain. Proc. Natl. Acad. Sci. USA. 90:6736–6740.

    Article  PubMed  CAS  Google Scholar 

  7. Wahlestedt, C., Pich, E. M., Koob, G. F., Yee, F., and Heilig, M. 1993. Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligodeoxynucleotides. Science 259:528–531.

    Article  PubMed  CAS  Google Scholar 

  8. Wahlestedt, C., Golanov, E., Yamamoto, S., Yee, F., Ericson, H., Yoo, H. Inturrisi, C. E., and Reis, D. J. 1993. Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions. Nature 363:260–263.

    Article  PubMed  CAS  Google Scholar 

  9. Zhou, L.-W., Zhang, S.-P., Qin, Z.-H., and Weiss, B. 1994. In vivo administration of an oligodeoxynucleotide antisense to the D2 dopamine receptor messenger RNA inhibits D2 dopamine receptor-mediated behavior and the expression of D2 dopamine receptors in mouse striatum. J. Pharmacol. Exp. Ther. 268:1015–1023.

    PubMed  CAS  Google Scholar 

  10. Tseng, L. F., Collins, K. A., and Kampine, J. P. 1994. Antisense oligodeoxynucleotide to a δ-opioid receptor selectively blocks the spinal antinociception induced by δ-, but not μ- or κ-opioid receptor agonists in the mouse. Eur. J. Pharmacol. 258:R1–3.

    Article  PubMed  CAS  Google Scholar 

  11. Bilsky, E. J., Bernstein, R. N., Pasternak, G. W., Hruby, V. J., Patel, D., Porreca, F., and Lai, J. 1994. Selective inhibition of [D-ala2, glu4]deltorphin antinociception by supraspinal, but not spinal, administration of an antisense oligodeoxynucleotide to an opioid delta receptor. Life Sci. 55:PL 37–43.

    Article  Google Scholar 

  12. Chien, C.-C., Brown, G., Pan, Y.-X., and Pasternak, G. W. 1994. Blockade of U50,488H analgesia by antisense oligodeoxynucleotides to a κ-opioid receptor. Eur. J. Pharmacol. 253:R7–8.

    Article  PubMed  CAS  Google Scholar 

  13. Standifer, K. M., Chien, C.-C., Wahlestedt, C., Brown, G. P., and Pasternak, G. W. 1994. Selective loss of δ opioid analgesia and binding by antisense oligodeoxynucleotides to a δ opioid receptor. Neuron. 12:805–810.

    Article  PubMed  CAS  Google Scholar 

  14. Adams, J. U., Chen, X. H., DeRiel, J. K., Adler, M. W., and Liu-Chen, L.-Y. 1994. Intraventricular treatment with an antisense oligodeoxynucleotide to κ-opioid receptors inhibited κ-agonist-induced analgesia in rats. Brain Res. 667:129–132.

    Article  PubMed  CAS  Google Scholar 

  15. Chen, X. H., Geller, E. B., DeRiel, J. K., Liu-Chen, L.-Y., and Adler, M. W. 1995. Antisense oligodeoxynucleotides against μ-or κ-opioid receptors block agonist-induced body temperature changes in rats. Brain Res. 688:237–241.

    Article  PubMed  CAS  Google Scholar 

  16. Chen, X. H., Adams, J. U., Geller, E. B., DeRiel, J. K., Adler, M. W., and Liu-Chen, L.-Y. 1995. An antisense oligodeoxynucleotide to μ-opioid receptors inhibits μ-agonist-induced analgesia in rats. Eur. J. Pharmacol. 275:105–108.

    Article  PubMed  CAS  Google Scholar 

  17. Adams, J. U., Chen, X. H. DeRiel, J. K. Yin, J., Adler, M. W., and Liu-Chen, L.-Y. 1996. Functional effects of antisense oligodeoxynucleotides to opioid receptors in rats, pages 37–52,in R. B. Raffa and F. Porreca (eds) Application of antisense strategies for investigation of receptor mechanisms in vivo and in vitro, Landes Biomedical Publishers.

  18. Wahlestedt, C. 1994. Antisense oligodeoxynucleotide strategies in neuropharmacology. Trends in Pharm. Sci. 15:42–46.

    Article  CAS  Google Scholar 

  19. Furchgott, R. F., and Bursztyn, P. 1967. Comparison of dissociation constants and of relative efficacies of selected agonists acting on parasympathetic receptors. Ann. N.Y. Acad. Sci. 144:882–899.

    Article  CAS  Google Scholar 

  20. Portoghese, P. S., Larson, D. L., Sayre, L. M., Fries, D. S., and Takemori, A. E. 1980. A novel opioid receptor site directed alkylating agent with irreversible narcotic antagonistic and reversible agonistic activities. J. Med. Chem. 23:233–234.

    Article  PubMed  CAS  Google Scholar 

  21. Takemori, A. E., Larson, D. L., and Portoghese, P. S. 1981. The irreversible narcotic antagonistic and reversible agonistic properties of the fumaramate methyl ester derivative of naltrexone. Eur. J. Pharmacol. 70:445–451.

    Article  PubMed  CAS  Google Scholar 

  22. Ward, S. J., Portoghese, P. S., and Takemori, A. E. 1982. Pharmacological profiles of β-funaltrexamine (β-FNA) and β-chlornaltrexamine (β-CNA) on the mouse vas deferens preparation. Eur. J. Pharmacol. 80:377–384.

    Article  PubMed  CAS  Google Scholar 

  23. Ward, S. J., Portoghese, P. S., and Takemori, A. E. 1982. Pharmacological characterization in vivo of the novel opiate, β-funaltrexamine. J. Pharmacol. Exp. Ther. 220:494–498.

    PubMed  CAS  Google Scholar 

  24. Adams, J. U., Paronis, C. A., and Holtzman, S. G. 1990. Assessment of relative intrinsic activity of mu-opioid analgesics in vivo by β-funaltrexamine. J. Pharmacol. Exp. Ther. 255:1027–1032.

    PubMed  CAS  Google Scholar 

  25. Mjanger, E., and Yaksh, T. L. 1991. Characteristics of dose-dependent antagonism by β-funaltrexamine of the antinociceptive effects of intrathecalMu agonists. J. Pharmacol. Exp. Ther. 258: 544–550.

    PubMed  CAS  Google Scholar 

  26. Tam, S. W., and Liu-Chen, L.-Y. 1986. Reversible and irreversible binding of beta-funaltrexamine to mu, delta and kappa opioid receptors in guinea pig brain membranes. J. Pharmacol. Exp. Ther. 239:351–357.

    PubMed  CAS  Google Scholar 

  27. Recht, L. D., and Pasternak, G. W., 1987. Effects of beta-funal-trexamine on radiolabeled opioid binding. Eur. J. Pharmacol. 140: 219–214.

    Article  Google Scholar 

  28. Liu-Chen, L.-Y., and Phillips, C. A. 1987. Covalent labeling of μ opioid binding site by [3H]β-funaltrexamine. Mol. Pharmacol. 32: 321–329.

    PubMed  CAS  Google Scholar 

  29. Liu-Chen, L.-Y., Li, S., and Tallarida, R. J. 1990. Studies on kinetics of [3H]β-funaltrexamine binding to μ opioid receptor. Mol. Pharmacol. 37:243–251.

    PubMed  CAS  Google Scholar 

  30. Liu-Chen, L.-Y., Li, S., and Lewis, M. E. 1991. Autoradiographic study of irreversible binding of [3H]β-funaltrexamine to opioid receptors in the rat forebrain: comparison with μ and δ receptor distribution. Brain Res., 544:235–242.

    Article  PubMed  CAS  Google Scholar 

  31. Martin, T. J., Dworkin, S. I., and Smith, J. E. 1995. Alkylation of mu opioid receptors by beta-funaltrexamine in vivo: comparison of the effects on in situ binding and heroin self-administration in rats. J. Pharmacol. Exp. Ther. 272:1135–1140.

    PubMed  CAS  Google Scholar 

  32. Liu-Chen, L.-Y., Yang, H. H., Li, S., and Adams, J. U. 1995. Effect of intracerebroventricular β-funaltrexamine on μ opioid receptors in the rat brain: consideration of binding condition. J. Pharmacol. Exp. Ther. 273:1047–1056.

    PubMed  CAS  Google Scholar 

  33. Pellegrino, L. J., and Cushman, A. J.: A Stereotaxic Atlas of the Rat Brain, pp. 1–81, Appleton-Century-Crofts, New York, 1967.

    Google Scholar 

  34. Lipman, D. J., and Pearson, W. R. 1985. Rapid and sensitive protein similarity searches. Science. 227:1435–1441.

    Article  PubMed  CAS  Google Scholar 

  35. Pizziketti, R. J., Pressman, N. S., Geller, E. B., Cowan, A., and Adler, M. W. 1985. Rat cold water tail-flick: a novel analgesic test that distinguishes opioid agonists from mixed agonist-antagonists. Eur. J. Pharmacol. 119:23–29.

    Article  PubMed  CAS  Google Scholar 

  36. Tallarida, R. J., and Murray, R. B. 1987. Manual of Pharmacologic Calculation with Computer Program, Springer-Verlag, N.Y. (2nd edition).

    Google Scholar 

  37. Tallarida, R. J., and Cowan, A. 1982. The affinity of morphine for its pharmacologic receptor in vivo. J. Pharmacol. Exp. Ther. 222:198–211.

    PubMed  CAS  Google Scholar 

  38. Tallarida, R. J. 1995. Receptor discrimination and control of agonist-antagonist binding. Am. J. Physiol. 269 (Endocrinol. and Metab. 32): E379–391.

    PubMed  CAS  Google Scholar 

  39. Marquardt, D. W. 1963. An algorithm for least-squares estimation of nonlinear parameter. J. Soc. Ind. Appl. Math. Vol. 11, p431–441.

    Article  Google Scholar 

  40. Zimmerman, D. M., Leander, J. D., Reel, J. K., and Hynes, M. D. 1987. Use of β-funaltrexamine to determine mu opioid receptor involvement in the analgesic activity of various opioid ligands. J. Pharmacol. Exp. Ther. 241:374–378.

    PubMed  CAS  Google Scholar 

  41. Ward, S. J., Fries, D. S., Larson, D. L., Portoghese, P. S., and Takemori, A. E. 1985. Optoid receptor binding characteristics of the non-equilibrium μ antagonist, β-funaltrexamine (β-FNA). Eur. J. Pharmacol. 107:323–330.

    Article  PubMed  CAS  Google Scholar 

  42. Chen, X. H., Geller, E. B., and Adler, M. W. 1996. Electrical stimulation at traditional acupuncture sites in periphery produces brain opioid-receptor-mediated antinociception in rats. J. Pharmacol. Exp. Ther. 277:654–660.

    PubMed  CAS  Google Scholar 

  43. Han, J.-S., and Xie, C.-W. 1982. Dynorphin: Potent antinociceptive effect in spinal cord of the rat. Life Sci 31:1781–1784.

    Article  PubMed  CAS  Google Scholar 

  44. Geller, E. B., Hawk, C., Keinath, S. H., Tallarida, R. J., and Adler, M. W. 1983. Subclasses of opioids based on body temperature change in rats: acute subcutaneous administration. J. Pharmacol. Exp. Ther. 225:391–398.

    PubMed  CAS  Google Scholar 

  45. Geller, E. B., Rowan, C. H., and Adler, M. W. 1986. Body temperature effects of opioids in rats: Intracerebroventricular administration. Pharmacol. Biochem. Behav. 24:1761–1765.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang, S.-P., Zhou, L.-W., Morabito, M., Lin, R. C. S., and Weiss, B. in press. Uptake and distribution of fluorescein-labeled D2 dopamine antisense oligodeoxynucleotide in mouse brain. J. Mol. Neurosci.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Eric J. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, XH., Liu-Chen, LY., Tallarida, R.J. et al. Use of a μ-antisense oligodeoxynucleotide as a μ opioid receptor noncompetitive antagonist in vivo. Neurochem Res 21, 1363–1368 (1996). https://doi.org/10.1007/BF02532377

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532377

Key Words

Navigation