Skip to main content
Log in

Coupled and constrained sylvester equations in system design

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Several design problems, including reduced observer and compensator design, output feedback, and finite transmission zero assignment, are examined using the vehicle of the coupled Sylvester equations. The coupling is generally provided through a third equation involving the solutions of the two linear Sylvester equations, thus serving as a constraint on the allowed solutions. The Sylvester approach allows the unification of algebraic and geometric approaches, and provides numerical design algorithms through the tool of the Hessenberg form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Applevich,Implicit Linear Systems, Springer-Verlag, Berlin and New York, 1991.

    Google Scholar 

  2. G. Basile and G. Marro, Controlled and conditioned invariant subspaces in linear system theory,JOTA, pp. 304–315, 1969.

  3. S. P. Bhattacharrya and E. deSouza, Pole assignment via Sylvester's equation,Systems & Control Letters, pp. 261–263, 1982.

  4. S. P. Bhattacharrya, Observer design for linear systems with unknown inputs,IEEE Trans. Automat. Control, pp. 483–484, 1978.

  5. F. M. Brasch and J. B. Pearson, Pole assignment using dynamic compensators,IEEE Trans. Automat. Control, pp. 348–351, 1970.

  6. J. W. Brewer, Kronecker products and matrix calculus in system theory,IEEE Trans. Circuits and Systems, pp. 772–785, 1978.

  7. R. W. Brockett and C. I. Byrnes, Multivariable nyquist criteria, root loci, and pole placement: a geometric viewpoint,IEEE Trans. Automat. Control, pp.271–284, 1981.

  8. R. K. Cavin III and S. P. Bhattacharrya, Robust and well conditioned eigenstructure assignment via Sylvester equation,Proc. American Control Conf., pp. 1053–1057, 1982.

  9. C. T. Chen,Introduction to Linear System Theory, Holt, Rinehart and Winston, New York, 1970.

    Google Scholar 

  10. E. J. Davison, On pole assignment in linear systems with incomplete state feedback,IEEE Trans. Automat. Control, pp. 348–351, 1970.

  11. E. J. Davison, A note on pole assignment in linear systems with incomplete state feedback,IEEE Trans. Automat. Control, pp. 98–99, 1971.

  12. E. J. Davison and S. G. Chow, An algorithm for the assignment of closed-loop poles using output feedback in large linear multivariable systems,IEEE Trans. Automat. Control, pp. 74–75, 1973.

  13. E. J. Davison and S.-H. Wang, Properties and calculation of transmission zeros of linear multivariable systems,Automatica, pp. 643–658, 1974.

  14. E. J. Davison and S.-H. Wang, On pole assignment in linear multivariable systems using output feedback,IEEE Trans. Automat. Control, pp. 516–518, 1975.

  15. L. R. Fletcher and J. F. Magni, Exact pole assignment by output feedback: Part 1,Int. Journal of Control, pp. 1995–2007, 1987.

  16. C. Giannakopoulos and N. Karcanias, Pole assignment of strictly proper and proper linear systems by constant output feedback,Int. Journal of Control, pp. 543–565, 1985.

  17. G. H. Golub, S. Nash, and C. VanLoan, A Hessenberg-Schur method for the problemAX+XB=C, IEEE Trans. Automat. Control, pp. 909–913, 1979.

  18. Y. Guan and M. Saif, A novel approach to the design of unknown input observer,IEEE Trans. Automat. Control, pp. 632–635, 1991.

  19. G. Hostetter and J. S. Meditch, Observing systems with unmeasurable inputs,IEEE Trans. Automat. Control, pp. 307–308, 1973.

  20. M. Jamshidi, M. Tarokh, and B. Shafai,Computer-aided Analysis and Design of Linear Control Systems, Prentice-Hall, Englewood Cliffs, NJ, 1992.

    MATH  Google Scholar 

  21. C. D. Johnson, On observers for systems with unknown or inaccessible inputs,Int. Journal of Control, pp. 825–831, 1975.

  22. J. Kautsky, N. K. Nichols, and P. Van Dooren, Robust pole assignment in linear state feedback,Int. Journal of Control, pp. 1129–1155, 1985.

  23. H. Kimura, On pole assignment by gain output feedback,IEEE Trans. Automat. Control, pp. 509–516, 1975.

  24. H. Kimura, A further result on the problem of pole assignment by gain output feedback,IEEE Trans. Automat. Control, pp. 458–463, 1977.

  25. H. Kimura, On pole assignment by output feedback,Int. Journal of Control, pp. 11–22, 1978.

  26. N. Kobauashi and T. Nakamizo, An observer design for linear systems with unknown inputs,Int. Journal of Control, pp. 605–609, 1982.

  27. B. Kouvaritakis and A. G. J. MacFarlane, Geometric approach to analysis and synthesis of system zeros. Part 2: Non-square systems,Int. Journal of Control, pp. 164–181, 1976.

  28. B. Kouvaritakis and A. G. J. MacFarlane, Geometric approach to analysis and synthesis of system zeros. Part 1: Square systems,Int. Journal of Control, pp. 149–166, 1976.

  29. P. Kudva, N. Viswandam, and A. Ramakrisma, Observers for linear systems with unknown inputs,IEEE Trans. Automat. Control, pp. 113–115, 1980.

  30. P. Kurek, The state vector reconstruction for linear systems with unknown inputs,IEEE Trans. Automat. Control, pp. 1120–1122, 1983.

  31. B-H. Kwon and M-J. Youn, Eigenvalue-eigenvector assignment by output feedback,IEEE Trans. Automat. Control, pp. 417–421, 1987.

  32. D. G. Luenberger, Observers of multivariable systems,IEEE Trans. Automat. Control, pp. 190–197, 1966.

  33. J. F. Magni and C. Champetier, A general framework for pole placement assignment algorithms,27th CDC, Austin, Texas, pp. 2223–2229, 1988.

  34. J. S. Meditch and G. H. Hostetter, Observers for systems with unknown and inaccesssible inputs,Int. Journal of Control, pp. 473–480, 1974.

  35. B. J. Miller and R. Mukanden, On designing reduced-order observers for linear time-invariant systems subject to unknown inaccessible inputs,Int. Journal of Control, pp. 473–480, 1974.

  36. P. Misra and R. V. Patel, Numerical algorithms for eigenvalue assignment by constant and dynamic output feedback,IEEE Trans. Automat. Control, pp. 579–588, 1989.

  37. B. C. Moore, On the flexibility offered by state feedback in multivariable control,IEEE Trans. Automat. Control, pp. 689–692, 1976.

  38. H. H. Rosenbrock,State-space and Multivariable Theory, Wiley, New York, 1970.

  39. J. M. Schumacher, Compensator synthesis using (C, A, B)-pairs,IEEE Trans. Automat. Control, pp. 1133–1138, 1980.

  40. J. M. Schumacher, Regulator synthesis using (C, A, B)-pairs,IEEE Trans. Automat. Control, pp. 1211–1221, 1982.

  41. V. L. Syrmos, A new algorithm for reduced-order observer design, American Control Conference, Chicago, IL, 1992.

  42. V. L. Syrmos, On the finite transmission zero assignment,Automatica, vol. 29, pp. 1121–1126, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  43. V. L. Syrmos, Computational observer design techniques for linear systems with unknown inputs using the concept of transmission zeros,IEEE Trans. Automat. Control, vol. 38, pp. 790–794, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  44. V. L. Syrmos and F. L. Lewis, A bilinear formulation for the output feedback problem in linear systems,IEEE Trans. Automat. Control, vol. 39, pp. 410–414, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  45. V. L. Syrmos and F. L. Lewis, A geometric approach to proportional-plus-derivative feedback using quotient and partitioned subspaces,Automatica, pp. 349–369, 1991.

  46. V. L. Syrmos and F. L. Lewis, State-feedback design techniques using nonsquare descriptions,IEEE Trans. Automat. Control, vol. 37, pp. 1431–1437, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  47. V. L. Syrmos and F. L. Lewis, Output feedback eigenstructure assignment using two Sylvester equations,IEEE Trans. Automat. Control, vol. 38, pp. 495–499, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  48. V. L. Syrmos and G. L. Syrmos, Computational design technique for reduced-order compensators,IEEE Trans. Automat. Control, vol. 37, pp. 1774–1778, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  49. C. C. Tsui, A complete analytical solution to the equationTA−FT=LC and its applications,IEEE Trans. Automat. Control, pp. 742–744, 1987.

  50. C. C. Tsui, An algorithm for computing state feedback in multiinput linear systems,IEEE Trans. Automat. Control, pp. 243–246, March 1986.

  51. P. Van Dooren, The computation of Kronecker's canonical form of a singular system,Lin. Algebra and its Applic., pp. 103–140, 1979.

  52. P Van Dooren, The generalized eigenstructure problem in linear system theory,IEEE Trans. Automat. Control, pp. 111–129, 1981.

  53. P. Van Dooren, A reduced-order observers: A new algorithm and proof,Systems& Control Letters, pp. 243–250, 1984.

  54. A. I. Vardulakis, A sufficient condition forn specified eigenvalues to be assigned under constant output feedback,IEEE Trans. Automat. Control, pp. 428–429, 1975.

  55. S. H. Wang, E. J. Davison, and P. Dorato, Observing the states of systems with unmeasurable disturbances,IEEE Trans. Automat. Control, pp. 716–717, 1975.

  56. W. M. Wonham,Linear Multivariable Control: A Geometric Approach, Springer-Verlag, Berlin and New York, 1984.

    Google Scholar 

  57. F. Yang and R. W. Wilde, Observers for systems with unknown inputs,IEEE Trans. Automat. Control, pp. 677–681, 1988.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by the National Science Foundation under Grant No. NCR-9210408 and by the University of Hawaii Research Council under Contract No. 93868F728B425.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syrmos, V.L., Lewis, F.L. Coupled and constrained sylvester equations in system design. Circuits Systems and Signal Process 13, 663–694 (1994). https://doi.org/10.1007/BF02523122

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02523122

Keywords

Navigation