Skip to main content
Log in

Classification of premature ventricular complexes using filter bank features, induction of decision trees and a fuzzy rule-based system

  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The classification of heart beats is important for automated arrhythmia monitoring devices. The study describes two different classifiers for the identification of premature ventricular complexes (PVCs) in surface ECGs. A decision-tree algorithm based on inductive learning from a training set and a fuzzy rule-based classifier are explained in detail. Traditional features for the classification task are extracted by analysing the heart rate and morphology of the heart beats from a single lead. In addition, a novel set of features based on the use of a filter bank is presented. Filter banks allow for time-frequency-dependent signal processing with low computational effort. The performance of the classifiers is evaluated on the MIT-BIH database following the AAMI recommendations. The decision-tree algorithm has a gross sensitivity of 85.3% and a positive predictivity of 85.2%, whereas the gross sensitivity of the fuzzy rule-bassed system is 81.3%, and the positive predictivity is 80.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Association for the Advancement of Medical Instrumentation (1998): ‘Testing and reporting performance results of ventricular arrhythmia detection algorithms’. AAMI, 3330 Washington Blvd., Suite 400, Arlington, VA 22201, USA

    Google Scholar 

  • Afonso, V. X., Tompkins, W. J., Nguyen, T. Q., Michler, K., andLuo, S. (1966): ‘Comparing stress ECG enhancement algorithms: with an introduction to a filter bank based approach’,IEEE Eng. Med. Biol. Mag.,15, pp. 37–44

    Article  Google Scholar 

  • Afonso, V. X., Wieben, O., Tompkins, W. J., Nguyen, T. Q., andLuo, S. (1997): ‘Filter bank-based ECG beat classification’, Proc. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc.,19, pp. 97–100.

    Google Scholar 

  • Afonso, V. X., Tompkins, W. J., Nguyen, T. Q., andLuo, S. (1999): ‘ECG beast detection using filter banks’,IEEE Trans.,BME-46, pp. 192–202.

    Google Scholar 

  • Bezdek, J. C. (1981): ‘Pattern recognition with fuzzy objective function algorithms’ (Plenum Press, New York)

    MATH  Google Scholar 

  • Chow, H. S., Moody, G. B., andMark, R. G. (1992): ‘Detection of ventricular ectopic beats using neural networks’, Comput. in Cardiol. Conf. 1992, IEEE Computer Society Press, pp. 659–662

  • Clayton, R. H., Murray, A., andCampbell, R. W. F. (1995): ‘Objective features, of the surface electrocardiogram during ventricular tachyarrhythmias’,Eur. Heart J.,16, pp. 115–1119

    Google Scholar 

  • Dassen, W. R., Karthaus, V. L., Talmon, J. L., Mulleneers, R. G., Smeets, J. L., andWellens, H. J. (1995): ‘Evaluation of new self learning techniques for the generation of criteria for differentiation of wide-QRS tachycardia in supraventricular tachycardia and ventricular tachycardia’,Clin. Cardiol.,18, pp. 103–108

    Article  Google Scholar 

  • Gulley, N., andJang, J. S. (1995): ‘Fuzzy logic toolbox for use with MATLAB’ (MathWorks Inc, Natick, MA)

    Google Scholar 

  • Ham, F. M., andHan, S. (1996): ‘Classification of cardiac arrhythmias using fuzzy ARTMAP’,IEEE Trans.,BME-43, pp. 425–430

    Google Scholar 

  • Hamdan, M., andScheinman, M. (1995): ‘Current approaches in patients with ventricular tachyarrhythmias’,Med. Clin. North Am.,79, pp. 1097–1120

    Google Scholar 

  • Hu, Y. H., Tompkins, W. J., Urrusti, J. L., andAfonso, V. X. (1994): ‘Applications of artificial neural networks for ECG signal detection and classification’,J. Electrocardiol.,26, (suppl.), pp. 66–73

    Google Scholar 

  • Jenkins, J. M., andCaswell, S. A. (1996): ‘Detection algorithms in implantable cardioverter defibrillators’,Proc. IEEE,84, pp. 428–445

    Article  Google Scholar 

  • Kohavi, R., Sommerfield, D., andDougherty, J. (1996): ‘Data mining using MLC++: a machine learning library in C++’. Proc. Tools in Artificial Intelligence, IEEE Computer Society Press pp. 234–245

  • Malvar, H. S. (1992): ‘Signal processing with lapped transfroms’ (Artech House, Norwood, MA)

    Google Scholar 

  • Mendel, J. M. (1995): ‘Fuzzy logic systems for engineering: a tutorial’,Proc. IEEE,83, pp. 345–377

    Article  Google Scholar 

  • Moody, G. B., andMark, R. G. (1982): ‘Development and evaluation of a 2-lead ECG analysis program’, Comput. in Cardiol. Conf., IEEE Computer Society Press, pp. 39–44

  • Quinlan, J. R. (1986): ‘Induction of decision trees’,Mach. Learn.,1, pp. 81–106

    Google Scholar 

  • Rappaport, S. H., Gillick, L., Moody, G. B., andMark, R. G. (1982): ‘QRS morphology classification: quantitative evaluation of different strategies’. Comput. in Cardiol. Conf., IEEE Computer Society Press, pp. 33–38

  • Ripley, K. L., Bump, T. E., andArzbaeche, R. C. (1989): ‘Evaluation of techniques for recognition of ventricular arrhythmias by implanted devices’,IEEE Trans.,BME-36, pp. 618–624

    Google Scholar 

  • Silipo, R., Taddei, A., Varanini, M., andMarchesi, C. (1995): ‘Classification of arrhythmic events in ambulatory electrocardiogram, using artificial neural networks,’Comput. Biomed. Res.,28, pp. 305–318

    Article  Google Scholar 

  • Soman, A. K., Vaidyanathan, P. P., andNguyen, T. Q. (1993): ‘Linear phase paraunitary filter banks: theory, factorizations and designs’,IEEE Trans. Signal Process.,41, pp. 3480–3495

    Article  MATH  Google Scholar 

  • Thakor, N. V., Webster, J. G., andTompkins, W. J. (1984): ‘Estimation of QRS complex power spectra for design of a QRS filter’,IEEE Trans.,BME-31, pp. 702–706

    Google Scholar 

  • Wang, J. Y. J. (1983): ‘Application of pattern recognition techniques to QRS complex classification—a review’, Comput. in Cardiol. IEEE Computer Society Press pp. 77–82

  • Wieben, O., Afonso, V. X., andTompkins, W. J. (1997): ‘Classification of PVCs with a fuzzy logic system’, Proc. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., Nov. 1997,19, pp. 65–67.

    Google Scholar 

  • Zadeh, L. (1965): ‘Fuzzy sets’,Inf. Control,8, pp. 338–352

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Tompkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wieben, O., Afonso, V.X. & Tompkins, W.J. Classification of premature ventricular complexes using filter bank features, induction of decision trees and a fuzzy rule-based system. Med. Biol. Eng. Comput. 37, 560–565 (1999). https://doi.org/10.1007/BF02513349

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02513349

Keywords

Navigation