Skip to main content
Log in

Pathogen recognition and signal transduction by the Pto kinase

  • JPR Symposium
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

In tomato, the disease resistance genePto confers resistance to bacterial speck disease by recognizing the expression of a corresponding avirulence gene,avrPto, in the pathogenPseudomonas syringae pv.tomato (Martinet al. 1993). Similar “gene-for-gene” interactions occur in many plant-pathogen associations (Flor 1971). Such recognition events often lead to the activation in the plant of a variety of defense responses including a rapid induction of localized necrosis at the site of infection (the hypersensitive response, HR), increased expression of defense-related genes, production of antimicrobial compounds, lignin formation, and the oxidative burst (Lambet al. 1989, Mehdy 1994). As a result, the pathogen is contained at the infection site and its growth is inhibited.Pto encodes a serine/threonine protein kinase and belongs to a clustered multigene family. Another member of thePto family calledFen confers no known disease resistance, but mediates a hypersensitive-like reaction in the plant to the insecticide fenthion (Martinet al. 1994). We are interested in a number of fundamental questions concerning the Pto signaling pathways. What is the molecular basis of thePto-avrPto gene-for-gene interaction? What are the components involved in thePto-mediated signal transduction chain? How does thePto kinase activate complex defense responses? This paper summarizes our recent progress towards understanding these questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C.J., andBroglie, R. 1991. Transgenic plants with enhanced resistance to the fungal pathogenRhizoctonia solani. Science254: 1194–1197.

    Article  CAS  Google Scholar 

  • Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., andDong, X. 1997. TheArabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell88: 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Elliot, R., Betzner, A., Huttner, E., Oakes, M., Tucker, M., Gerentes, D., Perez, P. andSmyth, D. 1996.AINTEGUMENTA, anAPETALA2-like gene ofArabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell8: 155–168.

    Article  Google Scholar 

  • Flor, H.H. 1971. Current status of gene-for-gene concept. Annu. Rev. Phytopathol.9: 275–296.

    Article  Google Scholar 

  • Fukuda, Y., Ohme, M. andShinshi, H. 1991. Gene structure and expression of a tobacco endochitinase gene in suspension-cultured tobacco cells. Plant Mol. Biol.16: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Gopalan, S., Bauer, D.W., Alfano, J.R., Loniello, A.O., He, S.Y. andCollmer, A. 1996. Expression of thePseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence in the hypersensitive response and pathogenicity Hrp secretion system in eliciting genotype-specific hypersensitive cell death. Plant Cell8: 1095–1105.

    Article  PubMed  CAS  Google Scholar 

  • Gyuris, J., Golemis, E., Chertkov, H. andBrent, R. 1993. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell75: 791–803.

    Article  PubMed  CAS  Google Scholar 

  • Hanks, S. andQuinn, A.M. 1993. Protein Phosphorylation.In T. Hunter and B.M. Sefton, eds. Academic Press, Inc., San Diego. Methods in Enzymol.200: 38–63.

    Google Scholar 

  • Hirayama, T. andOka, A. 1992. Novel protein kinase ofArabidopsis thaliana APK1 that phosphorylates tyrosine, serine and threonine. Plant Mol. Biol.20: 653–662.

    Article  PubMed  CAS  Google Scholar 

  • Jia, Y., Loh, Y.-T., Zhou, J. andMartin, G.B., 1997. Alleles ofPto andFen occur in bacterial speck-suspectible and fenthion-insensitive tomato and encode active protein kinases. Plant Cell9: 61–73.

    Article  PubMed  CAS  Google Scholar 

  • Jofuku, K.D., den Boer, B.G.W., van Montagu, M. andOkamuro, J.K. 1994. Control ofArabidopsis flower and seed development by the homeotic geneAPETALA2. Plant Cell6: 1211–1225.

    Article  PubMed  CAS  Google Scholar 

  • Klucher, K., Chow, H., Reiser, L. andFischer, R. 1996. TheAINTEGUMENTA gene ofArabidopsis required for ovule and female gametophyte development is related to the floral homeotic geneAPETALA2. Plant Cell8: 137–153.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, C.L., Lawton, M.A., Dron, M. andDixon, R.A. 1989. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell56: 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Liu, D., Narasimhan, M.L., Xu, Y., Raghothama, K.G., Hasegawa, P.M. andBressan, R.A. 1995. Fine structure and function of the osmotin gene promoter. Plant Mol. Biol.29: 1015–1026.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G.B., Brommonschenkel, S.H., Chunwongse, J., Frary, A., Ganal, M.W., Spivey, R., Wu, T., Earle, E.D. andTanksley, S.D. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science262: 1432–1436.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G.B., Frary, A., Wu, T., Brommonschenkel, S., Chunwongse, J., Earle, E.D. andTanksley, S.D. 1994. A member of thePto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell6: 1543–1552.

    Article  PubMed  CAS  Google Scholar 

  • Mehdy, M.C. 1994. Active oxygen species in plant defense against pathogens. Plant Physiol.105: 467–472.

    PubMed  CAS  Google Scholar 

  • Moran, T.V. andWalker, J.C. 1993. Molecular cloning of two novel protein kinase genes fromArabidopsis thaliana. Biochim. Biophys. ACTA1216: 9–14.

    PubMed  CAS  Google Scholar 

  • Ohme-Takagi, M. andShinshi, H. 1995 Ethylene-inducible DNA binding proteins that interact with an ethyleneresponsive element. Plant Cell7: 173–182.

    Article  PubMed  CAS  Google Scholar 

  • Payne, G., Middlesteadt, W., Desai, N., Williams, S., Dincher, S., Carnes, M. andRyals, J. 1989. Isolation and sequence of a genomic clone encoding the basic form of pathogenesis-related protein 1 fromNicotiana tabacum. Plant Mol. Biol.12: 595–596.

    Article  CAS  Google Scholar 

  • Salmeron, J.M., Oldroyd, G.E.D., Rommens, C.M.T., Scofield, S.R., Kim, H.-S., Lavelle, D.T., Dahlbeck, D. andStaskawicz, B.J. 1996. TomatoPrf, is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within thePto kinase gene cluster. Cell86: 123–133.

    Article  PubMed  CAS  Google Scholar 

  • Scofield, S.R., Tobias, C.M., Rathjen, J.P., Chang, J.H., Lavelle, D.T., Michelmore, R.W. andStaskawicz, B.J. 1996. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science274: 2063–2065.

    Article  PubMed  CAS  Google Scholar 

  • Tang, X., Frederick, R.D., Zhou, J., Halterman, D.A., Jia, Y. andMartin, G.B. 1996. Initiation of plant disease resistance by physical interaction of AvrPto and the Pto kinase. Science274: 2060–2063.

    Article  PubMed  CAS  Google Scholar 

  • Ward, E.R., Uknes, S.J., Williams, S.C., Dincher, S.S., Wiederhold, D.L., Alexander, D.C., Ahl-Goy, P. Meltraux, J.-P. andRyals, J.A. 1991. Coordinate gene activity in response to agents that induce, systemic acquired resistance. Plant Cell3: 1084–1094.

    Article  Google Scholar 

  • Wilson, K., Long, D. Swinburne, J. andCoupland, G. 1996. A dissociation insertion causes a semidominant mutation that increases expression ofTINY, anArabidopsis gene related toAPETALA2. Plant Cell8: 659–671.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J., Loh, Y.-T., Bressan, R.A. andMartin, G.B. 1995. The tomato genePti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell83: 925–935.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J., Tang, X. andMartin, G.B., 1997. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. J. Eur. Mol. Biol. Org.16: 3207–3218.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Tang, X., Frederick, R. et al. Pathogen recognition and signal transduction by the Pto kinase. J. Plant Res. 111, 353–356 (1998). https://doi.org/10.1007/BF02512196

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02512196

Key words

Navigation