Skip to main content
Log in

An unusual wheat insertion sequence (WIS1) lies upstream of an α-amylase gene in hexaploid wheat, and carries a “minisatellite” array

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Comparison of the 5′ flanking regions of three α-amylase genes from chromosome 6B of hexaploid wheat by heteroduplex and sequence analysis revealed the presence of a 1.6 kb stem-loop insertion sequence (WIS1) in one of them. Polymorphism among hexaploid wheat varieties suggests the relatively recent insertion/excision of this sequence from its present position. The complete sequence of the stem-loop insertion shows that it has many of the features found in transposable elements, including target site duplication and terminal inverted repeats. One unusual feature is a tandem array of direct repeats comprising a wheat “minisatellite” sequence. Both the insertion sequence and the minisatellite are found at multiple locations in the wheat genome, but the functional significance of their association in WIS1 is unknown. The minisatellite arrays share a common core structure, and long arrays are polymorphic between different hexaploid varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsworth CC, Doherty P, Edwards KGK, Martienssen RA, Gale MD (1985) Allelic variation at alpha-amylase loci in hexaploid wheat. Theor Appl Genet 70: 400–406

    CAS  Google Scholar 

  • Baulcombe DC, Huttly AK, Martienssen RA, Barker RF, Jarvis MG (1987) A novel wheat alpha-amylase gene (α-Amy-3). Mol Gen Genet 209: 33–40

    Article  CAS  PubMed  Google Scholar 

  • Bazetoux S, Jouanin L, Huguet T (1978) Characterisation of inverted repeat structures in wheat nuclear DNA. Nucleic Acids Res 5: 751–769

    PubMed  CAS  Google Scholar 

  • Chandler V, Rivin C, Walbot V (1986) Stable non-mutator stocks of maize have sequences homologous to theMu1 transposable element. Genetics 114:1007–1021

    PubMed  CAS  Google Scholar 

  • Craig NL, Nash HA (1983) The mechanism of phage lambda site-specific recombination: site-specific breakage of DNA by Int topoisomerase. Cell 35:795–803

    Article  PubMed  CAS  Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    PubMed  CAS  Google Scholar 

  • Eden FC (1985) Truncated repeated sequences generated by recombination in a specific region. Biochemistry 24:229–233

    Article  PubMed  CAS  Google Scholar 

  • Emmons SW, Yesner L, Ruan K, Katzenberg D (1983) Evidence for a transposon inC. elegans. Cell 32:55–65

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff NV (1983) Notes on cloning maize DNA. Maize Coop Genet Newslett 57:154

    Google Scholar 

  • Fedoroff NV, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235–242

    Article  PubMed  CAS  Google Scholar 

  • Fincham JRS, Sastry GRK (1974) Controlling elements in maize. Annu Rev Genet 8:15–50

    Article  PubMed  CAS  Google Scholar 

  • Flavell RB (1985) Repeated DNA sequences and genome change. In: Hohn B, Dennis ES (eds) Genetic Flux in Plants. Plant Gene Research, Springer Verlag, Vienna, pp 139–157

    Google Scholar 

  • Flavell RB, O’Dell M, Hutchinson J (1981) Nucleotide sequence organisation in plant chromosomes and evidence for sequence translocating during evolution. Cold Spring Harbor Symp Quant Biol 45:501–508

    PubMed  CAS  Google Scholar 

  • Fouts DL, Manning JE (1981) A complex repeated sequence within theDrosophila transposable elementcopia. Nucleic Acids Res 9:7053–7064

    PubMed  CAS  Google Scholar 

  • Freeling M (1984) Plant transposable elements and insertion sequences. Annu Rev Plant Physiol 35: 277–298

    Article  CAS  Google Scholar 

  • Frischauf A-M, Lehrach H, Poutska A, Murray N (1983) Lambda replacement vectors carrying polylinker sequences. J Mol Biol 170: 827–842

    PubMed  CAS  Google Scholar 

  • Grindley NDF, Reed RR (1985) Transpositional recombination in prokaryotes. Annu Rev Biochem 54:865–896

    Article  Google Scholar 

  • Harberd NP, Flavell RB, Thompson RD (1987) Identification of a transposon-like insertion in a Glu-1 allele of wheat. Mol Gen Genet 209: 326–332

    Article  CAS  PubMed  Google Scholar 

  • Huttly AK, Martienssen RA, Baulcombe DC (1988) Sequence heterogeneity and differential expression of thealpha-Amy-2 gene family in wheat. Mol Gen Genet 214: 232–240

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable minisatellite regions in human DNA. Nature 314: 67–73

    Article  PubMed  CAS  Google Scholar 

  • Kihara H (1951) Substitutions of nucleus and its effects on genomic manifestations. Cytologia 16: 177–193

    Google Scholar 

  • Landy A, Ross W (1977) Viral integration and excision: structure of the lambdaatt sites. Science 197: 1147–1160

    PubMed  CAS  Google Scholar 

  • Lazarus CM, Baulcombe DC, Martienssen RA (1985) Alpha-amylase genes of wheat are two multi-gene families which are differentially expressed. Plant Mol Biol 5: 13–24

    Article  CAS  Google Scholar 

  • Liebermann D, Hoffman-Liebermann B, Weinthal J, Childs G, Maxson R, Mauron A, Cohen SN, Kedes L (1983) An unusual transposon with long terminal inverted repeats in the sea urchinStrongylocentrotus purpuratus. Nature 306: 342

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Martienssen RA (1986) The molecular genetics of alpha-amylase gene families in hexaploid wheat. PhD Thesis, Cambridge University, England

    Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101: 20–89

    Article  PubMed  CAS  Google Scholar 

  • Muller-Neumann M, Yoder J, Starlinger P (1984) The DNA sequence of the transposable elementAc ofZea mays L. Mol Gen Genet 198:19–24

    Article  Google Scholar 

  • Nickoloff JA, Chen EY, Heffron F (1986) A 24 bp DNA sequence from the MAT locus stimulates intergenic recombination in yeast. Proc Natl Acad Sci USA 83: 7831–7835

    Article  PubMed  CAS  Google Scholar 

  • Pereira A, Schwarz-Sommer Zs, Gierl A, Bertram I, Peterson PA, Saedler H (1985) Genetic and molecular analysis of the En element inZea mays. EMBO J 4: 17–23

    PubMed  CAS  Google Scholar 

  • Potter SS (1982) DNA sequence of a foldback transposable element inDrosophila. Nature 297: 201–204

    Article  PubMed  CAS  Google Scholar 

  • Potter SS, Brorein WJ, Dunsmuir P, Rubin GM (1979) Transposition of elements of the 412, copia and 297 dispersed repeated gene families inDrosophila. Cell 17: 415–427

    Article  PubMed  CAS  Google Scholar 

  • Saedler H, Nevers P (1985) Transposition in plants: a molecular model. EMBO J 4: 585–590

    PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Sasakawa C, Carle GF, Berg DE (1983) Sequences essential for transposition at the termini of IS50. Proc Natl Acad Sci (USA) 80: 7293–7298

    Article  CAS  Google Scholar 

  • Shapiro J (1983) Mobile Genetic Elements. Academic Press, New York

    Google Scholar 

  • Shepherd NS, Schwarz-Sommer Zs, Wienand U, Sommer H, Deumling B, Peterson PA, Saedler H (1982) Cloning of a genomic fragment carrying the insertion elementCin1 ofZea mays. Mol Gen Genet 188: 266–271

    Article  CAS  Google Scholar 

  • Shirsat A (1988) A transposon-like structure in the 5′ flanking sequence of a legumin gene fromPisum sativum. Mol Gen Genet 212:129–133

    Article  PubMed  CAS  Google Scholar 

  • Simmler MC, Johnsson C, Petit C, Rouyer F, Vergnaud G, Weissenbach J (1987) Two highly polymorphic minisatellites from the pseudoautosomal region of the human sex chromosomes. EMBO J 6: 963–969

    PubMed  CAS  Google Scholar 

  • Smith DB, Flavell RB (1975) Characterisation of the wheat genome by renaturation kinetics. Chromosoma 50: 223–242

    Article  CAS  Google Scholar 

  • Staden R (1982) Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Res 10: 2951–2961

    PubMed  CAS  Google Scholar 

  • Thomas JO (1978) Electron microscopy of DNA. In: Hayat MA (ed) Principles and techniques of electron microscopy (biological applications), vol 9 van Nostrand Reinhold Co. (London) pp 64–81

    Google Scholar 

  • Vodkin LO, Rhodes PR, Goldberg RB (1983) A lectin gene insertion has the structural features of a transposable element. Cell 34: 1023–1031

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Saedler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martienssen, R.A., Baulcombe, D.C. An unusual wheat insertion sequence (WIS1) lies upstream of an α-amylase gene in hexaploid wheat, and carries a “minisatellite” array. Molec. Gen. Genet. 217, 401–410 (1989). https://doi.org/10.1007/BF02464910

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02464910

Key words

Navigation