Skip to main content
Log in

Atrophy and loss of dopaminergic mesencephalic neurons in heterozygous weaver mice

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The phenotypic effect of theweaver mutation in the ventral midbrain of homozygous mutants is associated with the progressive loss of dopaminergic neurons. To discover whether the number of mesencephalic dopaminergic cells is altered in weaver heterozygotes (wv/+), we studied mice between 20 and 365 days of age. We counted tyrosine hydroxylase (TH)-immunopositive cells in the substantia nigra (SN), retrorubral nucleus (RRN), and ventral tegmental area (VTA), and measured cross-sectional areas of neuronal somata in the SN ofwv/+ and age-matched wild-type controls (+/+). The number of TH-positive cells in thewv+ ventral midbrain was on average 13% lower than normal. Cell loss was detected selectively in the SN (12%) and VTA (23%). The areas of somatic profiles in thewv/+ nigral neurons were on average reduced by 9.8%. The neuronal losses in the SN and VTA correlated with a 13.8% reduction in dopamine level in the ventral striatum inwv/+ mice at 14–16 months of age. Our findings imply that a single dose of theweaver gene in the mouse is associated with cellular damage leading to a chronic deficiency in the mesostriatal dopaminergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfert M, Bern HA, Kahn RD (1955) Hormonal influence on nuclear synthesis. Acta Anat 23:185

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA, Triarhou LC, Thomas JD, Ghetti B (1994) Correlated quantitative studies of the neostriatum, nucleus accumbens, substantia nigra, and ventral tegmental area in normal and weaver mutant mice. J Neurosci 14:6901–6910

    PubMed  CAS  Google Scholar 

  • Bayer SA, Wills KV, Triarhou LC, Verina T, Thomas JD, Ghetti B (1995) Selective vulnerability of late-generated dopaminergic neurons of the substantia nigra in weaver mutant mice. Proc Natl Acad Sci USA 92:9137–9140

    Article  PubMed  CAS  Google Scholar 

  • Björklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2. Elsevier, Amsterdam, pp 55–122

    Google Scholar 

  • Blatt GJ, Eisenman LM (1985) A qualitative and quantitative light microscopic study of the inferior olivary complex of normal, reeler, and weaver mutant mice. J Comp Neurol 232:117–128

    Article  PubMed  CAS  Google Scholar 

  • Bostwick JR, Le WD (1991) A tyrosine hydroxylase assay in microwells using coupled nonenzymatic decarboxylation of DOPA. Anal Biochem 192:125–130

    Article  PubMed  CAS  Google Scholar 

  • Gaspar P, Ben Jelloun N, Febvret A (1994) Sparing of the dopaminergic neurons containing calbindin-D28K and of the dopaminergic mesocortical projections in weaver mutant mice. Neuroscience 61:293–305

    Article  PubMed  CAS  Google Scholar 

  • German DC, Manaye KF, Sonsalla PK, Brooks BA (1992) Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced Parkinsonism: sparing of calbindin-D28K-containing cells. Ann NY Acad Sci 648:42–62

    PubMed  CAS  Google Scholar 

  • Ghetti B, Triarhou LC (1990) Profile of mesencephalic dopamine neuron loss in weaver mutant mice during life-span. Soc Neurosci Abstr 16:1138

    Google Scholar 

  • Ghetti B, Triarhou LC (1992a) Nigrostriatal aberrations induced by weaver gene are present at birth. Soc Neurosci Abstr 18:156

    Google Scholar 

  • Ghetti B., Triarhou LC (1992b) Combined degeneration of cerebellar granule cells and of midbrain dopamine neurons in the weaver mutant mouse. In: Hefti F, Weiner WJ (eds) Progress in Parkinson’s disease research. Futura Publishing, Mount Kisko, NY, pp 375–388

    Google Scholar 

  • Ghetti B, Triarhou LC (1992c) Degeneration of mesencephalic dopamine neurons in weaver mutant mice. Neurochem Int 20:305S-307S

    Article  PubMed  CAS  Google Scholar 

  • Gupta M, Felten DL, Ghetti B (1987) Selective loss of monoaminergic neurons in weaver mutant mice: an immunocytochemical study. Brain Res 402:379–382

    Article  PubMed  CAS  Google Scholar 

  • Hartman HA, Kirsch GE, Drewe JA, Taglialatela M, Joho RH, Brown AM (1991) Exchange of conduction pathways between two related K+ channels. Science 251:942–944

    Google Scholar 

  • Heginbotham L, Abramson T, MacKinnon R (1992) A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 258:1152–1155

    PubMed  CAS  Google Scholar 

  • Horowski R, Wachtel H, Turski L, Löschmann P-A (1994) Glutamate excitotoxicity as a possible pathogenetic mechanism of chronic neurodegeneration. In: Calne DB (ed) Neurodegenerative diseases. WB Saunders, Philadelphia, pp 163–175

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lundberg C, Wictorin K, Björklund A (1994) Retrograde degenerative changes in the substantia nigra pars compacta following an excitotoxic lesion of the striatum. Brain Res 644:205–212

    Article  PubMed  CAS  Google Scholar 

  • Maragos WF, Greenamyre JT, Penney JB, Young AB (1987) Glutamate dysfunction in Alzheimer’s disease: an hypothesis. Trends Neurosci 10:65–68

    Article  CAS  Google Scholar 

  • Meldrum BS, Garthwaite J (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 11:379–387

    Article  PubMed  CAS  Google Scholar 

  • Palkovits M, Fischer J (1968) Karyometric investigation. Akademiai Kiado Budapest

    Google Scholar 

  • Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson A (1995) A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nature Genet 11:126–129

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Sidman RL (1973a) Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex in weaver mutant mice. J Comp Neurol 152:103–132

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Sidman RL (1973b) Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol 152:133–162

    Article  PubMed  CAS  Google Scholar 

  • Rezai Z, Yoon CH (1972) Abnormal rate of granule cell migration in the cerebellum of weaver mutant mice. Dev Biol 29:17

    Article  PubMed  CAS  Google Scholar 

  • Richter JA, Stotz EH, Ghetti B, Simon JR (1992) Comparison of alterations in tyrosine hydroxylase, dopamine level and dopamine uptake in the striatum of the weaver mutant mouse. Neurochem Res 17:437–441

    Article  PubMed  CAS  Google Scholar 

  • Roffler-Tarlov S (1992) Genetic causes of neuronal cell death. Ann NY Acad Sci 648:105–118

    PubMed  CAS  Google Scholar 

  • Roffler-Tarlov S, Graybiel AM (1984) Weaver mutation has differential effects on the dopamine-containing innervation of the limbic and non-limbic striatum. Nature 307:62–66

    Article  PubMed  CAS  Google Scholar 

  • Roffler-Tarlov S, Graybiel AM (1986) Expression of the weaver gene in dopamine-containing neural systems is dose-dependent and affects both striatal and nonstriatal regions. J Neurosci 6:3319–3330

    PubMed  CAS  Google Scholar 

  • Roffler-Tarlov S, Graybiel AM (1987) The postnatal development of the dopamine-containing innervation of dorsal and ventral striatum: effects of the weaver gene. J Neurosci 7:2364–2372

    PubMed  CAS  Google Scholar 

  • Roffler-Tarlov S, Graybiel AM (1991) Genetic effects of dopamine uptake sites in the striatum. Soc Neurosci Abstr 17:1289

    Google Scholar 

  • Roffler-Tarlov S, Pugatch D, Graybiel AM (1990) Patterns of cell and fiber vulnerability in the mesostriatal system of the mutant mouse weaver. II. High affinity uptake sites for dopamine. J Neurosci 10:734–740

    PubMed  CAS  Google Scholar 

  • Roffler-Tarlov S, Martin B, Graybiel AM, Kauer JS (1996) Cell death in the midbrain of the murine mutation weaver. J Neurosci 16:1819–1826

    PubMed  CAS  Google Scholar 

  • SAS Institute (1989) SAS/STAT user’s guide, version 6. SAS Institute, Cary, NC

    Google Scholar 

  • Scharfman HE, Schwartzkroin PA (1989) Protection of dentate hilar cells from prolonged stimulation by intracellular calcium chelation. Science 246:257–260

    PubMed  CAS  Google Scholar 

  • Schmidt MJ, Sawer BD, Perry KW, Fuller RW, Foreman MM, Ghetti B (1982) Dopamine deficiency in the weaver mutant mouse. J Neurosci 2:376–380

    PubMed  CAS  Google Scholar 

  • Sidman RL (1968) Development of interneuronal connections in brains of mutant mice. In: Carlson FD (ed) Physiological and biochemical aspects of nervous integration. Prentice-Hall, Englewood Cliffs, pp 163–193

    Google Scholar 

  • Sidman RL (1982) Mutations affecting the central nervous system in the mouse. In: Schmidt FO, Bird SJ, Bloom FE (eds) Molecular genetic neuroscience. Raven Press, New York, pp 389–400

    Google Scholar 

  • Simon JR, Ghetti B (1992) Topographic distribution of dopamine uptake, choline uptake, choline acetyltransferase, and GABA uptake in the striata of weaver mutant mice. Neurochem Res 17:431–436

    Article  PubMed  CAS  Google Scholar 

  • Simon JR, Richter JA, Ghetti B (1994) Age-dependent alterations in dopamine content, tyrosine hydroxylase activity, and dopamine uptake in the striatum of the weaver mutant mouse. J Neurochem 62:543–548

    Article  PubMed  CAS  Google Scholar 

  • Slesinger PA, Patil N, Liao YJ, Jan LY, Cox DR (1996) Functional effects of the weaver mutation on the G protein-gated inwardly rectifying K+ channels. Neuron 16:321–331

    Article  PubMed  CAS  Google Scholar 

  • Smeyne RJ, Goldowitz D (1990) Purkinje cell loss is due to a direct action of the weaver gene in Purkinje cells: evidence from chimeric mice. Dev Brain Res 52:211–218

    Article  CAS  Google Scholar 

  • Smith MW, Cooper TR, Joh TH, Smith DE (1990) Cell loss and class distribution in the substantia nigra of the neurological mutant, weaver. Brain Res 510:242–250

    Article  PubMed  Google Scholar 

  • Sotelo C (1980) Mutant mice and the formation of the cerebellar circuitry. Trends Neurosci 3:33–36

    Article  Google Scholar 

  • Sternberger LA, Hardy PH Jr, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    PubMed  CAS  Google Scholar 

  • Stotz EH, Palacios JM, Landwehrmeyer B, Norton J, Ghetti B, Simon JR, Triarhou LC (1994) Alterations in dopamine and serotonin uptake systems in the striatum of the weaver mutant mouse. J Neural Transm Gen Sect 97:51–64

    Article  PubMed  CAS  Google Scholar 

  • Tong Y, Wei J, Wang Y, Zhang S, Strong J, Dlouhy SR, Hodes ME, Ghetti B, Yu L (1996) The weaver mutation changes the ion selectivity of the affected inwardly rectifying potassium channel GIRK2. FEBS Lett 390:63–68

    Article  PubMed  CAS  Google Scholar 

  • Triarhou LC (1987) Definition of the mesostriatal dopamine deficit in the weaver mutant mouse and reconstruction of the damaged pathway by means of neural transplantation. Doctoral dissertation Indiana University. Ann Arbor (University Microfilm International, no. 8727536)

    Google Scholar 

  • Triarhou LC (1992) Weaver gene expression in central nervous system. Methods Neurosci 9:209–227

    CAS  Google Scholar 

  • Triarhou LC, Ghetti B (1989) The dendritic dopamine projection of the substantia nigra: phenotypic denominator of weaver gene action in hetero- and homozygosity. Brain Res 501:373–381

    Article  PubMed  CAS  Google Scholar 

  • Triarhou LC, Ghetti B (1991) Further characterization of the dopaminergic dendrite deficit in substantia nigra pars reticulata of heterozygous and homozygous weaver mutant mice: Golgi, MAP2 and synaptic connectivity studies. Soc Neurosci Abstr 17:159

    Google Scholar 

  • Triarhou LC, Low WC, Ghetti B (1986) Transplantation of ventral mesencephalic anlagen to hosts with genetic nigrostriatal dopamine deficiency. Proc Natl Acad Sci USA 83:8789–8793

    Article  PubMed  CAS  Google Scholar 

  • Triarhou LC, Norton J, Ghetti B (1988) Mesencephalic dopamine cell deficit involves areas A8, A9 and A10 in weaver mutant mice. Exp Brain Res 70:256–265

    Article  PubMed  CAS  Google Scholar 

  • Trump BF, Berezesky IK (1992) The role of cytosolic Ca2+ in cell injury, necrosis and apoptosis. Curr Opin Cell Biol 4:227–232

    Article  PubMed  CAS  Google Scholar 

  • Verina T, Tang X, Fitzpatrick L, Norton J, Vogelweid C, Ghetti B (1995) Degeneration of Sertoli and spermatogenic cells in homozygous and heterozygous weaver mice. J Neurogenet 9:251–265

    PubMed  CAS  Google Scholar 

  • Verney C, Febvret-Muzerelle A, Gaspar P (1995) Early postnatal changes of the dopaminergic mesencephalic neurons in the weaver mutant mouse. Dev Brain Res 89:115–119

    Article  CAS  Google Scholar 

  • Williams RW, Herrup C (1988) The control of neuron number. Annu Rev Neurosci 11:423–453

    Article  PubMed  CAS  Google Scholar 

  • Winer BJ, Brown DR, Michels KM (1971), Statistical principles in experimental design, 3rd ed. McGraw-Hill, New York

    Google Scholar 

  • Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res 526:303–307

    Article  PubMed  CAS  Google Scholar 

  • Yool AJ, Schwarz TL (1991) Alteration of ionic selectivity of K+channel by mutation of the H5 region. Nature 349:700–704

    Article  PubMed  CAS  Google Scholar 

  • Zanjani HS, Mariani J, Delhaye-Bouchaud N, Herrup K (1991) Neuronal loss in heterozygous staggerer mutant mice. Dev Brain Res 67:153–160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study is dedicated to the memory of the late Professor James A. Norton, Jr (1921–1996) by the coauthors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verina, T., Norton, J.A., Sorbel, J.J. et al. Atrophy and loss of dopaminergic mesencephalic neurons in heterozygous weaver mice. Exp Brain Res 113, 5–12 (1997). https://doi.org/10.1007/BF02454137

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02454137

Key words

Navigation