Skip to main content
Log in

Linear and nonlinear properties of platinum electrode polarisation. Part 1: frequency dependence at very low frequencies

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The polarisation impedance of the platinum electrode was measured in physiological saline (0·9% NaCl) over six decades of frequencies down to 1 mHz. The applicability, of Fricke’s phase angle rule was verified down to 10 mHz. The resistive shunt which emerges at lower frequencies was shown to be equivalent to the direct current (d.c.) impedance of the interface. A Cole-Cole (1941) type of relaxation model is proposed to describe the interface behaviour over all frequency ranges. Nonlinear polarisation measurments have demonstrated the validity of Schwan’s limit law of linearity at very low frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Almasi, J. J., Hart, M. W. andSchmitt, O. H. (1968) On-line measurement of biological impedance at very low frequencies.Biophys. J.,8, A45.

    Google Scholar 

  • Almasi, J. J. andSchmitt, O. H. (1974) Automated measurement of bioelectric impedance at very low frequencies.Comp. Biomed. Res.,7, 449.

    Article  Google Scholar 

  • Armstrong, R. D., Bell, M. F. andMetcalfe, A. A. (1977) A method for automatic impedance measurement and analysis.J. Electroanal. Chem.,77, 287.

    Google Scholar 

  • Bockris, J. O’M., Gileadi, E. andMüller, K. (1966) Dielectric relaxation in the electric double layer.J. Chem. Phys. 44, 1, 1445.

    Article  Google Scholar 

  • Boer, R. W. de andvan Oosterom, A. (1978) Electrical properties of platinum electrodes: impedance measurements and time domain analysis.Med. & Biol. Eng. & Comput.,16, 1–10.

    Google Scholar 

  • Burbank, D. P. andWebster, J. G. (1978) Reducing skin potential motion artefact by skin abrasion.Med. & Biol. Eng. & Comput.,16, 31–38.

    Google Scholar 

  • Cole, K. S. andCole, R. H. (1941) Dispersion and absorption in dielectrics. I. Alternating current characteristics.J. Chem. Phys.,9, 341.

    Article  Google Scholar 

  • Daniel, V. V. (1967)Dielectric relaxation. Academic Press, New York, London.

    Google Scholar 

  • Dymond, A. (1976) Characteristics of the metal-tissue interface of stimulation electrodes.IEEE Trans.,BME23, 4, 274.

    Google Scholar 

  • Epelboin, I., Gabrielli, C. andLestrade, J. C. (1970) Etude et réalization d’un potentiostat destiné aux mesures d’impédance électrochimique entre 10−5 et 50 kHz.Revue Générale de l’Electricité,79, 669.

    Google Scholar 

  • Epelboin, I., Keddam, M. andLestrade, J. C. (1973) Faradaic impedances and intermediates in electrochemical reactions.Faraday Discuss. Chem. Soc.,56, 264.

    Article  Google Scholar 

  • Fricke, H. (1932) The theory of electrolytic polarisation.Philo. Mag.,14, 310.

    Google Scholar 

  • Gabrielli, C. andKeddam, M. (1974) Progrès récent dans la mesure des impédances electrochimiques en régime sinusoidal.Electrochimica Acta,19, 355.

    Article  Google Scholar 

  • Gabrielli, C., Ksouri, M. andWiart, R. (1977) Compensation de la chute ohmique par une méthode analogique. Application a la mesure des impédances electrochimiques et à la détermination des courbes de polarization.Electrochimica Acta,22, 255.

    Article  Google Scholar 

  • Geddes, L. A., da Costa, C. P. andWise, G. (1971) The impedance of stainless-steel electrodes.Med. & Biol. Eng.,9, 511.

    Google Scholar 

  • Grahame, D. C. (1946) Properties of the electrical double layer at a mercury surface. II. The effect of frequency on the capacity and resistance of ideally polarized electrodes.J. Am. Chem. Soc.,68, 301.

    Article  Google Scholar 

  • Grahame, D. C. (1952) Mathematical theory of faradaic admittance.J. Electrochem. Soc.,99, 370c.

    Google Scholar 

  • Greef, R. (1978) Instruments for use in electrode process research.J. Phys. E.: Sci. Instrum.,11, 1.

    Article  Google Scholar 

  • Jaron, D., Schwan, H. P. andGeselowitz, D. B. (1968) A mathematical model for the polarization impedance of cardiac pacemaker electrodes.Med. & Biol. Eng.,6, 579.

    Google Scholar 

  • Kahn, A. andGreatbatch, W. (1974) Physiological electrodes. InMedical engineering,Ray, C. D. (Ed.) Year Book Med. Publ.

  • McDonald, J. R. (1971) Electrical response of materials containing space charge with discharge at the electrodes.J. Chem. Phys.,54, 2026.

    Article  Google Scholar 

  • Mohilner, D. M., Kreuser, J. C., Nakadomari, H. andMohilner, P. R. (1976) Computer controlled differential capacitance measurements.J. Electrochem. Soc.,123, 359.

    Article  Google Scholar 

  • Murdock, C. C. andZimmerman, E. E. (1936) Polarization impedance at low frequencies.Physics 7, 211.

    Article  Google Scholar 

  • Randles, J. E. B. (1947) Kinetics of rapid electrode reactions.Disc. Faraday Soc.,1, 11.

    Google Scholar 

  • Scheider, W. (1977) Real-time measurement of dielectric relaxation of biomolecules: kinetics of a protein-ligand binding reaction.Ann. N.Y. Acad. Sci.,303, 47.

    Google Scholar 

  • Schwan, H. P. (1963) Determination of biological impedances. InPhysical techniques in biological research (Vol. 6).Nastuk, W. L. (Ed.). Academic Press, New York, 323–407.

    Google Scholar 

  • Schwan, H. P. andMaczuk, J. G. (1965) Electrode polarization impedance: limits of linearity.Proc. 18th Ann. Conf. Eng. Biol. Med.,5, 24.

    Google Scholar 

  • Schwan, H. P. (1966) Alternating current electrode polarisation.Biophysik,3, 181.

    Article  Google Scholar 

  • Schwan, H. P. (1968) Electrode polarisation impedance and measurements in biological materials.Ann. N.Y. Acad. Sci.,148, 191.

    Google Scholar 

  • Silverman, H. T., Miller, I. F. andSalkind, A. J. (1973)Electrochemical bioscience and bioengineering. Electrochemical Soc., Inc., p. 160, discussion of the paper byPiersma et al.

  • Simpson, R. W. (1976)Nonlinear electrode polarization impedance. Ph.D. Dissertation, Univ., Pennsylvania.

  • Simpson, R. W., Berberian, J. G. andSchwan, H. P. (1980) Nonlinear AC and DC Polarization of Platinum Electrodes. IEEE Trans.,BME27, 166–171.

    Google Scholar 

  • Sluyters-Rehbach, M. andSluyters, J. H. (1970) Sine wave methods in the study of electrode processes.J. Electroanal. Chem.,4, 1.

    Google Scholar 

  • Timmer, B., Sluyters-Rehbach, M. andSluyters, J. H. (1968) On the impedance of galvanic cells. XXIII. Electrode Reactions with Specific Adsorption of the Electroactive Species: the Pb+2/Pb(Hg) Electrode in M KNO3-KCl Mixtures.J. Electroanal. Chem.,18, 93.

    Google Scholar 

  • Venkatesh, S. D. andChin, T. (1979) The alternating current electrode processes.Israel. J. Chem.,18, 56.

    Google Scholar 

  • Warburg, E. (1899) Ueber das Verhalten sogenannter unpolarisirbarer Elektroden gegen Wechselstrom.Ann. Physik. und Chemie,67, 493.

    MATH  Google Scholar 

  • Warburg, E. (1901) Ueber die Polarisations capacität des Platins.Ann. der. Physik.,6, 125.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onaral, B., Schwan, H.P. Linear and nonlinear properties of platinum electrode polarisation. Part 1: frequency dependence at very low frequencies. Med. Biol. Eng. Comput. 20, 299–306 (1982). https://doi.org/10.1007/BF02442796

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02442796

Keywords

Navigation